ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for geovitenskap
  • Artikler, rapporter og annet (geovitenskap)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Significance of substrate soil moisture content for rockfall hazard assessment

Permanent link
https://hdl.handle.net/10037/16617
DOI
https://doi.org/10.5194/nhess-19-1105-2019
Thumbnail
View/Open
article.pdf (4.601Mb)
Publisher`s version (PDF)
Date
2019-05-27
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Vick, Louise Mary; Zimmer, Valerie; White, Christopher; Massey, Chris; Davies, Tim
Abstract
Rockfall modelling is an important tool for hazard analysis in steep terrain. Calibrating terrain parameters ensures that the model results more accurately represent the site-specific hazard. Parameterizing rockfall models is challenging because rockfall runout is highly sensitive to initial conditions, rock shape, size and material properties, terrain morphology, and terrain material properties. This contribution examines the mechanics of terrain impact scarring due to rockfall on the Port Hills of Christchurch, New Zealand. We use field-scale testing and laboratory direct shear testing to quantify how the changing moisture content of the loessial soils can influence its strength from soft to hard, and vice versa. We calibrate the three-dimensional rockfall model RAMMS by back-analysing several well-documented rockfall events that occurred at a site with dry loessial soil conditions. We then test the calibrated “dry” model at a site where the loessial soil conditions were assessed to be wet. The calibrated dry model over-predicts the runout distance when wet loessial soil conditions are assumed. We hypothesize that this is because both the shear strength and stiffness of wet loess are reduced relative to the dry loess, resulting in a higher damping effect on boulder dynamics. For both realistic and conservative rockfall modelling, the maximum credible hazard is usually assumed; for rockfall on loess slopes, the maximum credible hazard occurs during dry soil conditions.
Description
Source at https://doi.org/10.5194/nhess-19-1105-2019. © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.
Publisher
European Geosciences Union (EGU)
Citation
Vick, L.M., Zimmer, V., White, C., Massey, C. & Davies, T. (2019). Significance of substrate soil moisture content for rockfall hazard assessment. Natural hazards and earth system sciences, 19, 1105-1117. https://doi.org/10.5194/nhess-19-1105-2019
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (geovitenskap) [806]

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)