ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Recent advances in hyperspectral imaging for melanoma detection

Permanent lenke
https://hdl.handle.net/10037/16661
DOI
https://doi.org/10.1002/wics.1465
Thumbnail
Åpne
article.pdf (1.397Mb)
(PDF)
Dato
2019-04-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Johansen, Thomas Haugland; Møllersen, Kajsa; Ortega, Samuel; Fabelo, Himar; Garcia, Aday; Callico, Gustavo; Godtliebsen, Fred
Sammendrag
Skin cancer is one of the most common types of cancer. Skin cancers are classified as nonmelanoma and melanoma, with the first type being the most frequent and the second type being the most deadly. The key to effective treatment of skin cancer is early detection. With the recent increase of computational power, the number of algorithms to detect and classify skin lesions has increased. The overall verdict on systems based on clinical and dermoscopic images captured with conventional RGB (red, green, and blue) cameras is that they do not outperform dermatologists. Computer‐based systems based on conventional RGB images seem to have reached an upper limit in their performance, while emerging technologies such as hyperspectral and multispectral imaging might possibly improve the results. These types of images can explore spectral regions beyond the human eye capabilities. Feature selection and dimensionality reduction are crucial parts of extracting salient information from this type of data. It is necessary to extend current classification methodologies to use all of the spatiospectral information, and deep learning models should be explored since they are capable of learning robust feature detectors from data. There is a lack of large, high‐quality datasets of hyperspectral skin lesion images, and there is a need for tools that can aid with monitoring the evolution of skin lesions over time. To understand the rich information contained in hyperspectral images, further research using data science and statistical methodologies, such as functional data analysis, scale‐space theory, machine learning, and so on, are essential.
Beskrivelse
This is the peer reviewed version of the following article: Johansen, T.H., Møllersen, K., Ortega, S., Fabelo, H., Garcia, A., Callico, G.M. & Godtliebsen, F. (2019). Recent advances in hyperspectral imaging for melanoma detection. Wiley Interdisciplinary Reviews: Computational Statistics, e1465, which has been published in final form at https://doi.org/10.1002/wics.1465. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Er en del av
Johansen, T.H. (2021). Leveraging Computer Vision for Applications in Biomedicine and Geoscience. (Doctoral thesis). https://hdl.handle.net/10037/21377.
Forlag
Wiley
Sitering
Johansen, T.H., Møllersen, K., Ortega, S., Fabelo, H., Garcia, A., Callico, G.M. & Godtliebsen, F. (2019). Recent advances in hyperspectral imaging for melanoma detection. Wiley Interdisciplinary Reviews: Computational Statistics, e1465. https://doi.org/10.1002/wics.1465
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [357]

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring