ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An integrative view of mammalian seasonal neuroendocrinology

Permanent link
https://hdl.handle.net/10037/17210
DOI
https://doi.org/10.1111/jne.12729
Thumbnail
View/Open
article.pdf (601.5Kb)
Accepted manuscript version (PDF)
Date
2019-05-06
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dardente, Hugues; Wood, Shona Hiedi; Ebling, Francis; Sáenz de Miera, Cristina
Abstract
Seasonal neuroendocrine cycles that govern annual changes in reproductive activity, energy metabolism and hair growth are almost ubiquitous in mammals that have evolved at temperate and polar latitudes. Changes in nocturnal melatonin secretion regulating gene expression in the pars tuberalis (PT) of the pituitary stalk are a critical common feature in seasonal mammals. The PT sends signal(s) to the pars distalis of the pituitary to regulate prolactin secretion and thus the annual moult cycle. The PT also signals in a retrograde manner via thyroid‐stimulating hormone to tanycytes, which line the ventral wall of the third ventricle in the hypothalamus. Tanycytes show seasonal plasticity in gene expression and play a pivotal role in regulating local thyroid hormone (TH) availability. Within the mediobasal hypothalamus, the cellular and molecular targets of TH remain elusive. However, two populations of hypothalamic neurones, which produce the RF‐amide neuropeptides kisspeptin and RFRP3 (RF‐amide related peptide 3), are plausible relays between TH and the gonadotrophin‐releasing hormone‐pituitary‐gonadal axis. By contrast, the ways by which TH also impinges on hypothalamic systems regulating energy intake and expenditure remain unknown. Here, we review the neuroendocrine underpinnings of seasonality and identify several areas that warrant further research.
Description
This is the peer reviewed version of the following article: Dardente, H., Wood, S.H., Ebling, F. & Sáenz de Miera, C. (2019). An integrative view of mammalian seasonal neuroendocrinology. Journal of neuroendocrinology. Journal of Neuroendocrinology, 31(5), e12729, which has been published in final form at https://doi.org/10.1111/jne.12729. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.
Publisher
Wiley
Citation
Dardente H, Wood SH, Ebling, Sáenz de Miera. An integrative view of mammalian seasonal neuroendocrinology. Journal of neuroendocrinology. 2019;31(5)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1637]
© 2019 British Society for Neuroendocrinology

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)