ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Performance of data enhancements and training optimization for neural network: A polyp detection case study

Permanent link
https://hdl.handle.net/10037/17323
DOI
https://doi.org/10.1109/CBMS.2019.00067
Thumbnail
View/Open
article.pdf (5.122Mb)
Accepted manuscript version (PDF)
Date
2019-08-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Henriksen, Fredrik Lund; Jensen, Rune; Stensland, Håkon Kvale; Johansen, Dag; Riegler, Michael; Halvorsen, Pål
Abstract
Deep learning using neural networks is becoming more and more popular. It is frequently used in areas like video analysis, image retrieval, traffic forecast and speech recognition. In this respect, the learning and training process usually requires a lot of data. However, in many areas, data is scarce which is definitely the case in our medical application scenario, i.e., polyp detection in the gastrointestinal tract. Here, colorectal cancer is on the list of most common cancer types, and often, the cancer arises from benign, adenomatous polyps containing dysplastic cells. Detection and removal of polyps can therefore prevent the development of cancer. Due to high cost, time consumption, patient discomfort and in-accuracy of existing procedures, researchers have started to explore systems for automatic polyp detection to assist and automate current examination procedures. Following the current gained traction for neural networks, and the typical lack of medical data, we explore how data enhancements affect the training and evaluation of the networks in terms of polyp detection accuracy and particularly if it can be used to increase the detection rate. We also experiment with how various training techniques can be used to increase performance. Our experimental results show how data enhancement and training optimization can be used to increase different aspects of the performance, but we also point out mechanisms that have no, and even a negative, effect.
Publisher
IEEE
Citation
Henriksen, Jensen, Stensland H, Johansen D, Riegler M, Halvorsen P. Performance of data enhancements and training optimization for neural network: A polyp detection case study. IEEE International Symposium on Computer-Based Medical Systems. 2019
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
©2019 IEEE

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)