Show simple item record

dc.contributor.authorSinghroha, Sunny
dc.contributor.authorBünz, Stefan
dc.contributor.authorPlaza Faverola, Andreia Aletia
dc.contributor.authorChand, Shyam
dc.date.accessioned2020-02-07T08:35:06Z
dc.date.available2020-02-07T08:35:06Z
dc.date.issued2020-01-24
dc.description.abstractJoint analysis of electrical resistivity and seismic velocity data is primarily used todetect the presence of gas hydrate-filled faultsand fractures. In this study, we present a novel approach to inferthe occurrence of structurally-controlled gas hydrateaccumulations using azimuthal seismic velocity analysis. We perform thisanalysis using ocean-bottom seismic (OBS) data at two sites on Vestnesa Ridge, W-Svalbard Margin. Previousgeophysical studies inferred the presence of gas hydrates at shallow depths (up to ~190-195 m below the seafloor) in marine sediments of Vestnesa Ridge. We analyze azimuthal P-wave seismic velocitiesin relation with steeply-dipping near surface faults to studystructural controlson gas hydrate distribution. This uniqueanalysis documentsdirectional changes in seismic velocitiesalong and acrossfaults. P-wavevelocitiesare elevated and reduced by ~0.06-0.08 km/s inazimuths where the raypath plane liesalong the faultplanein the gas hydrate stability zone(GHSZ)and below the base of the GHSZ, respectively. The resulting velocities can be explained with the presence ofgas hydrate-and free gas-filled faults above and below the base of the GHSZ, respectively. Moreover, the occurrence of elevated and reduced (>0.05 km/s) seismic velocities in groups of azimuths bounded by faults,suggestscompartmentalization of gas hydrates and free gas by fault planes. Results from gas hydrate saturation modelling suggest that these observed changes in seismic velocities with azimuth can be due to gas hydrate saturated faults of thickness greater than 20 cm and considerably smaller than300 cm.en_US
dc.identifier.citationSinghroha, Buenz, Plaza Faverola, Chand. Detection of gas hydrates in faults using azimuthal seismic velocity analysis,Vestnesa Ridge, W-Svalbard Margin. Journal of Geophysical Research (JGR): Solid Earth. 2020;125(2):1-21en_US
dc.identifier.cristinIDFRIDAID 1785067
dc.identifier.doi10.1029/2019JB017949
dc.identifier.issn2169-9313
dc.identifier.issn2169-9356
dc.identifier.urihttps://hdl.handle.net/10037/17351
dc.language.isoengen_US
dc.publisherAmerican Geophysical Unionen_US
dc.relation.journalJournal of Geophysical Research (JGR): Solid Earth
dc.relation.projectIDNorges forskningsråd: 223259en_US
dc.relation.projectIDNorges forskningsråd: 287865en_US
dc.relation.projectIDEC/H2020: 654462en_US
dc.relation.projectIDTromsø forskningsstiftelse: SEAMSTRESSen_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/SFF/223259/Norway/Centre for Arctic Gas Hydrate, Environment and Climate/CAGE/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRINATEK/287865/Norway/Tectonic Stress Effects on Arctic Methane Seepage/SEAMSTRESS/en_US
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/654462/EU/Strategies for Environmental Monitoring of Marine Carbon Capture and Storage/STEMM-CCS/en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2020 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Geosciences: 450en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Geofag: 450en_US
dc.titleDetection of gas hydrates in faults using azimuthal seismic velocity analysis,Vestnesa Ridge, W-Svalbard Marginen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record