ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning assisted quantification of graphitic surfaces exposure to defined environments

Permanent lenke
https://hdl.handle.net/10037/17650
DOI
https://doi.org/10.1063/1.5095704
Thumbnail
Åpne
article.pdf (1.277Mb)
Publisert versjon (PDF)
Dato
2019-06-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Lai, Chia-Yun; Santos, Sergio; Chiesa, Matteo
Sammendrag
We show that it is possible to submit the data obtained from physical phenomena as complex as the tip-surface interaction in atomic force microscopy to a specific question of interest and obtain the answer irrespective of the complexity or unknown factors underlying the phenomena. We showcase the power of the method by asking “how many hours has this graphite surface been exposed to ambient conditions?” In order to respond to this question and with the understanding that we have access to as many experimental data points as needed, we proceed to label the experimental data and produce a “library.” Then, we submit new data points to the test and request the model contained in this library answers to the question. We show that even with a standard artificial neural network, we obtain enough resolution to distinguish between surfaces exposed for less than 1 h, up to 6 h, and 24h. This methodology has potential to be extended to any number of questions of interest.
Beskrivelse
Publisher's version available at: https://aip.scitation.org/doi/full/10.1063/1.5095704
Forlag
American Institute of Physics (AIP)
Sitering
Lai, C., Santos, S., Chiesa, M. (2019) Machine learning assisted quantification of graphitic surfaces exposure to defined environments. Applied Physics Letters, 114, (24), 1-5
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Published under license by AIP Publishing

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring