ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology

Permanent link
https://hdl.handle.net/10037/17668
DOI
https://doi.org/10.1109/ACCESS.2019.2949483
Thumbnail
View/Open
article.pdf (3.166Mb)
Published version (PDF)
Date
2019-10-24
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Dey, Somdip; Singh, Amit Kumar; Prasad, Dilip K.; McDonald-Maier, Klaus D.
Abstract
Automated feature extraction from program source-code such that proper computing resources could be allocated to the program is very difficult given the current state of technology. Therefore, conventional methods call for skilled human intervention in order to achieve the task of feature extraction from programs. This research is the first to propose a novel human-inspired approach to automatically convert program source-codes to visual images. The images could be then utilized for automated classification by visual convolutional neural network (CNN) based algorithm. Experimental results show high prediction accuracy in classifying the types of program in a completely automated manner using this approach.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Citation
Dey, Singh, Prasad DK, Klaus. SoCodeCNN: Program Source Code for Visual CNN Classification Using Computer Vision Methodology. IEEE Access. 2019;7
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [481]
Copyright 2019 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)