ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Singularly perturbed spectral problems in a thin cylinder with fourier conditions on its bases

Permanent link
https://hdl.handle.net/10037/17720
DOI
https://doi.org/10.15407/mag15.02.256
Thumbnail
View/Open
article.pdf (381.0Kb)
Published version (PDF)
Date
2019
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Piatnitski, Andrey; Rybalko, Volodymyr
Abstract
The paper deals with the bottom of the spectrum of a singularly perturbed second order elliptic operator defined in a thin cylinder and having locally periodic coefficients in the longitudinal direction. We impose a homogeneous Neumann boundary condition on the lateral surface of the cylinder and a generic homogeneous Fourier condition at its bases. We then show that the asymptotic behavior of the principal eigenpair can be characterized in terms of the limit one-dimensional problem for the effective Hamilton-Jacobi equation with the effective boundary conditions. In order to construct boundary layer correctors we study a Steklov type spectral problem in a semi-infinite cylinder (these results are of independent interest). Under a structure assumption on the effective problem leading to localization (in certain sense) of eigenfunctions inside the cylinder we prove a two-term asymptotic formula for the first and higher order eigenvalues.
Citation
Piatnitski A, Rybalko V. (2019) Singularly perturbed spectral problems in a thin cylinder with fourier conditions on its bases. Journal of Mathematical Physics, Analysis, Geometry, 15, (2), 256-277
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2019 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)