Show simple item record

dc.contributor.authorLuppino, Luigi Tommaso
dc.contributor.authorBianchi, Filippo Maria
dc.contributor.authorMoser, Gabriele
dc.contributor.authorAnfinsen, Stian Normann
dc.date.accessioned2020-03-17T11:15:34Z
dc.date.available2020-03-17T11:15:34Z
dc.date.issued2019-08-14
dc.description.abstractChange detection (CD) in heterogeneous multitemporal satellite images is an emerging and challenging topic in remote sensing. In particular, one of the main challenges is to tackle the problem in an unsupervised manner. In this paper, we propose an unsupervised framework for bitemporal heterogeneous CD based on the comparison of affinity matrices and image regression. First, our method quantifies the similarity of affinity matrices computed from colocated image patches in the two images. This is done to automatically identify pixels that are likely to be unchanged. With the identified pixels as pseudotraining data, we learn a transformation to map the first image to the domain of the other image and vice versa. Four regression methods are selected to carry out the transformation: Gaussian process regression, support vector regression, random forest regression (RFR), and a recently proposed kernel regression method called homogeneous pixel transformation. To evaluate the potentials and limitations of our framework and also the benefits and disadvantages of each regression method, we perform experiments on two real data sets. The results indicate that the comparison of the affinity matrices can already be considered a CD method by itself. However, image regression is shown to improve the results obtained by the previous step alone and produces accurate CD maps despite of the heterogeneity of the multitemporal input data. Notably, the RFR approach excels by achieving similar accuracy as the other methods, but with a significantly lower computational cost and with fast and robust tuning of hyperparameters.en_US
dc.identifier.citationLuppino, L.T; Bianchi, F.M.; Moser, G.; Anfinsen, S.N. (2019) Unsupervised Image Regression for Heterogeneous Change Detection.<i> IEEE Transactions on Geoscience and Remote Sensing, 57,</i> (12), 9960-9975.en_US
dc.identifier.cristinIDFRIDAID 1720499
dc.identifier.doi10.1109/TGRS.2019.2930348
dc.identifier.issn0196-2892
dc.identifier.issn1558-0644
dc.identifier.urihttps://hdl.handle.net/10037/17764
dc.language.isoengen_US
dc.publisherIEEE (Institute of Electrical and Electronical Engineers)en_US
dc.relation.ispartofThe published version of this article is part of Luigi Tommaso Luppino's Ph.D. thesis, available in Munin at <a href=https://hdl.handle.net/10037/18399>https://hdl.handle.net/10037/18399</a>en
dc.relation.journalIEEE Transactions on Geoscience and Remote Sensing
dc.relation.projectIDNorges forskningsråd: 251327en_US
dc.relation.urihttps://ieeexplore.ieee.org/document/8798991
dc.rights.accessRightsopenAccessen_US
dc.rights.holder© Copyright 2020 IEEE - All rights reserveden_US
dc.subjectVDP::Matematikk og naturvitenskap: 400::Informasjons- og kommunikasjonsvitenskap: 420::Simulering, visualisering, signalbehandling, bildeanalyse: 429en_US
dc.subjectVDP::Mathematics and natural scienses: 400::Information and communication science: 420::Simulation, visualisation, signal processing, image analysis: 429en_US
dc.subjectEndringsdeteksjon / Change detectionen_US
dc.subjectJordobservasjon fra satellitter / Earth-monitoring satellitesen_US
dc.subjectMaskinlæring / Machine learningen_US
dc.subjectMønstergjenkjenning / Pattern Recognitionen_US
dc.titleUnsupervised Image Regression for Heterogeneous Change Detectionen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail
This item appears in the following collection(s)

Show simple item record