Poincaré function for moduli of differential-geometric structures
Author
Kruglikov, BorisAbstract
The Poincaré function is a compact form of counting moduli in local geometric problems. We discuss its property in relation to V. Arnold’s conjecture, and derive this conjecture in the case when the pseudogroup acts algebraically and transitively on the base. Then we survey the known counting results for differential invariants and derive new formulae for several other classification problems in geometry and analysis.
Description
Source at http://www.mathjournals.org/mmj/.
Publisher
Independent University of MoscowCitation
Kruglikov BS. Poincaré function for moduli of differential-geometric structures. Moscow Mathematical Journal. 2019;19(4):761-788Metadata
Show full item recordCollections
Copyright 2019 The Author(s)