ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q

Permanent link
https://hdl.handle.net/10037/18010
DOI
https://doi.org/10.1021/acs.jctc.9b00538
Thumbnail
View/Open
article.pdf (4.832Mb)
Accepted manuscript version (PDF)
Date
2019-08-22
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Jespers, Willem; Isaksen, Geir Villy; Andberg, Tor Arne Heim; Vasile, Silvana; van Veen, Amber; Åqvist, Johan; Brandsdal, Bjørn Olav; Gutiérrez-de-Terán, Hugo
Abstract
Predicting the effect of single-point mutations on protein stability or protein−ligand binding is a major challenge in computational biology. Free energy calculations constitute the most rigorous approach to this problem, though the estimation of converged values for amino acid mutations remains challenging. To overcome this limitation, we developed tailored protocols to calculate free energy shifts associated with single-point mutations. We herein describe the QresFEP protocol, which includes an extension of our recent protocols to cover all amino acids mutations, based on the latest versions of the OPLS-AA force field. QresFEP is implemented in an application programming interface framework and the graphic interface QGui, for the molecular dynamics software Q. The complete protocol is benchmarked in several model systems, optimizing a number of sampling parameters and the implementation of Zwanzig’s exponential formula and Bennet’s acceptance ratio methods. QresFEP shows an excellent performance on estimating the hydration free energies of amino acid side-chain mimics, including their charged analogues. We also examined its performance on a protein−ligand binding problem of pharmaceutical relevance, the antagonism of neuropeptide Y1 G protein-coupled receptor. Here, the calculations show very good agreement with the experimental effect of 16 mutations on the binding of antagonists BIBP3226, in line with our recent applications in this field. Finally, the characterization of 43 mutations of T4-lysozyme reveals the capacity of our protocol to assess variations of the thermal stability of proteins, achieving a similar performance to alternative free energy perturbation (FEP) approaches. In summary, QresFEP is a robust, versatile, and user-friendly computational FEP protocol to examine biochemical effects of single-point mutations with high accuracy.
Publisher
American Chemical Society
Citation
Jespers, Isaksen GVI, Andberg TAh, Vasile, van Veen, Åqvist J, Brandsdal BO, Gutiérrez-de-Terán. QresFEP: An Automated Protocol for Free Energy Calculations of Protein Mutations in Q . Journal of Chemical Theory and Computation. 2019;15(10):5461-5473
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [566]
Copyright © 2019 American Chemical Society

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)