ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

K-CUSUM: Cluster Detection Mechanism in EDMON

Permanent link
https://hdl.handle.net/10037/18060
Thumbnail
View/Open
article.pdf (1.349Mb)
Published version (PDF)
Date
2019-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Yeng, Prosper; Woldaregay, Ashenafi Zebene; Hartvigsen, Gunnar
Abstract
The main goal of the EDMON (Electronic Disease Monitoring Network) project is to detect the spread of contagious diseases at the earliest possible moment, and potentially before people know that they have been infected. The results shall be visualized on real-time maps as well as presented in digital communication. In this paper, a hybrid of K-nearness Neighbor (KNN) and cumulative sum (CUSUM), known as K-CUSUM, were explored and implemented with a prototype approach. The KNN algorithm, which was implemented in the K- CUSUM, recorded 99.52% accuracy when it was tested with simulated dataset containing geolocation coordinates among other features and SckitLearn KNN algorithm achieved an accuracy of 93.81% when it was tested with the same dataset. After injection of spikes of known outbreaks in the simulated data, the CUSUM module was totally specific and sensitive by correctly identifying all outbreaks and non-outbreak clusters. Suitable methods for obtaining a balance point of anonymizing geolocation attributes towards obscuring the privacy and confidentiality of diabetes subjects’ trajectories while maintaining the data requirements for public good, in terms of disease surveillance, remains a challenge.
Description
Source at https://www.ep.liu.se/ecp/contents.asp?issue=161.
Publisher
LiU: Linköping University Electronic Press
Citation
Yeng PK, Woldaregay AZ, Hartvigsen G. K-CUSUM: Cluster Detection Mechanism in EDMON. Linköping Electronic Conference Proceedings. 2019;161(024):141-147
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2019 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)