Show simple item record

dc.contributor.authorHøibakk, Ralph
dc.contributor.authorLukkassen, Dag
dc.contributor.authorMeidell, Annette
dc.contributor.authorPersson, Lars Erik
dc.date.accessioned2020-04-27T07:10:42Z
dc.date.available2020-04-27T07:10:42Z
dc.date.issued2020-02-18
dc.description.abstractThe aim is to put new light on the single ladder problem (SLP). Some new methods for finding complete integer solutions to the corresponding quartic equation z 4 −2L z 3 +( L 2 − a 2 − b 2 ) z 2 +2L a 2 z− L 2 a 2 =0 z4−2Lz3+(L2−a2−b2)z2+2La2z−L2a2=0 are developed. For the case L≥ L min L≥Lmin , these methods imply a complete parametric representation for integer solutions of SLP in the first quadrant. Some corresponding (less complete) results for the case L> L min L>Lmin are also pointed out. Keywords: single ladder problem (SLP); integer parametric solutions; simultaneous quadratic equations; quartic equations; algebraic equations; recreational mathematicsen_US
dc.identifier.citationHøibakk, R.; Lukkassen, D; Meidell, A.; Persson, L.E. (2020) A New Look at the Single Ladder Problem (SLP) via Integer Parametric Solutions to the Corresponding Quartic Equation. <i>Mathematics, 8,</i> (2), 1-21en_US
dc.identifier.cristinIDFRIDAID 1796387
dc.identifier.doi10.3390/math8020267
dc.identifier.issn2227-7390
dc.identifier.urihttps://hdl.handle.net/10037/18127
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.journalMathematics
dc.rights.accessRightsopenAccessen_US
dc.rights.holder© 1996-2020 MDPI (Basel, Switzerland)en_US
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Matematikk: 410en_US
dc.titleA New Look at the Single Ladder Problem (SLP) via Integer Parametric Solutions to the Corresponding Quartic Equationen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


File(s) in this item

Thumbnail

This item appears in the following collection(s)

Show simple item record