ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ReSpect: Relativistic spectroscopy DFT program package

Permanent link
https://hdl.handle.net/10037/18328
DOI
https://doi.org/10.1063/5.0005094
Thumbnail
View/Open
article.pdf (4.897Mb)
Published version (PDF)
Date
2020-05-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Repisky, Michal; Komorovsky, Stanislav; Kadek, Marius; Konecny, Lukas; Ekström, Ulf; Malkin, Elena; Kaupp, Martin; Ruud, Kenneth; Malkina, Olga L.; Malkin, Vladimir G.
Abstract
With the increasing interest in compounds containing heavier elements, the experimental and theoretical community requires computationally efficient approaches capable of simultaneous non-perturbative treatment of relativistic, spin-polarization, and electron correlation effects. The ReSpect program has been designed with this goal in mind and developed to perform relativistic density functional theory (DFT) calculations on molecules and solids at the quasirelativistic two-component (X2C Hamiltonian) and fully relativistic four-component (Dirac–Coulomb Hamiltonian) level of theory, including the effects of spin polarization in open-shell systems at the Kramers-unrestricted self-consistent field level. Through efficient algorithms exploiting time-reversal symmetry, biquaternion algebra, and the locality of atom-centered Gaussian-type orbitals, a significant reduction of the methodological complexity and computational cost has been achieved. This article summarizes the essential theoretical and technical advances made in the program, supplemented by example calculations. ReSpect allows molecules with >100 atoms to be efficiently handled at the four-component level of theory on standard central processing unit-based commodity clusters, at computational costs that rarely exceed a factor of 10 when compared to the non-relativistic realm. In addition to the prediction of band structures in solids, ReSpect offers a growing list of molecular spectroscopic parameters that range from electron paramagnetic resonance parameters (g-tensor, A-tensor, and zero-field splitting), via (p)NMR chemical shifts and nuclear spin–spin couplings, to various linear response properties using either conventional or damped-response time-dependent DFT (TDDFT): excitation energies, frequency-dependent polarizabilities, and natural chiroptical properties (electronic circular dichroism and optical rotatory dispersion). In addition, relativistic real-time TDDFT electron dynamics is another unique feature of the program. Documentation, including user manuals and tutorials, is available at the program’s website http://www.respectprogram.org.
Publisher
AIP Publishing
Citation
Repisky M, Komorovsky S, Kadek M, Konecny L, Ekström, Malkin E, Kaupp M, Ruud K, Malkina OL, Malkin VG. ReSpect: Relativistic spectroscopy DFT program package. Journal of Chemical Physics. 2020;152
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [566]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)