ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Spatial trend analysis of gridded temperature data at varying spatial scales

Permanent lenke
https://hdl.handle.net/10037/18527
DOI
https://doi.org/10.5194/ascmo-6-1-2020
Thumbnail
Åpne
article.pdf (6.297Mb)
Publisert versjon (PDF)
Dato
2020-02-28
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Haug, Ola; Thorarinsdottir, Thordis Linda; Sørbye, Sigrunn Holbek; Franzke, Christian L.E.
Sammendrag
Classical assessments of trends in gridded temperature data perform independent evaluations across the grid, thus, ignoring spatial correlations in the trend estimates. In particular, this affects assessments of trend significance as evaluation of the collective significance of individual tests is commonly neglected. In this article we build a space–time hierarchical Bayesian model for temperature anomalies where the trend coefficient is modelled by a latent Gaussian random field. This enables us to calculate simultaneous credible regions for joint significance assessments. In a case study, we assess summer season trends in 65 years of gridded temperature data over Europe. We find that while spatial smoothing generally results in larger regions where the null hypothesis of no trend is rejected, this is not the case for all subregions.
Forlag
Copernicus Publications
Sitering
Haug O, Thorarinsdottir TL, Sørbye SH, Franzke. Spatial trend analysis of gridded temperature data at varying spatial scales. Advances in Statistical Climatology, Meteorology and Oceanography (ASCMO). 2020;6(1):1-12
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [354]
Copyright 2020 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring