ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for språk og kultur
  • Artikler, rapporter og annet (språk og kultur)
  • View Item
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for språk og kultur
  • Artikler, rapporter og annet (språk og kultur)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep dives into big data: Best practices for synthesis of quantitative and qualitative analysis in Cognitive Linguistics

Permanent link
https://hdl.handle.net/10037/19158
DOI
https://doi.org/10.1075/rcl.00023.jan
Thumbnail
View/Open
article.pdf (450.0Kb)
Accepted manuscript version (PDF)
Date
2019-08-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Janda, Laura Alexis; Lu, Wei-Lun; Kudrnáčová, Naděžda
Abstract
The six articles in this special issue are exemplary studies that profile the current state-of-the art in cognitive linguistics, namely the synthesis of quantitative and qualitative linguistic analysis. This introduction is an opportunity to take stock of where cognitive linguistics started out, what kinds of approaches have been developed,andhowwehavearrivedatasynthesisinwhichempiricalexploration informs the interpretation of language phenomena.
Publisher
John Benjamins Publishing
Citation
Janda.; LA, Lu, W.L.; Kudrnáčová, N. (2019) Deep dives into big data: Best practices for synthesis of quantitative and qualitative analysis in Cognitive Linguistics. Review of Cognitive Linguistics, 17, (1), 1-6
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (språk og kultur) [1472]
© John Benjamins Publishing Company

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)