ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • View Item
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using statistical methods to model the fine-tuning of molecular machines and systems

Permanent link
https://hdl.handle.net/10037/19569
DOI
https://doi.org/10.1016/j.jtbi.2020.110352
Thumbnail
View/Open
article.pdf (1.463Mb)
Published version (PDF)
Date
2020-06-04
Type
Journal article
Tidsskriftartikkel

Author
Thorvaldsen, Steinar; Hössjer, Ola
Abstract
Fine-tuning has received much attention in physics, and it states that the fundamental constants of physics are finely tuned to precise values for a rich chemistry and life permittance. It has not yet been applied in a broad manner to molecular biology. However, in this paper we argue that biological systems present fine-tuning at different levels, e.g. functional proteins, complex biochemical machines in living cells, and cellular networks. This paper describes molecular fine-tuning, how it can be used in biology, and how it challenges conventional Darwinian thinking. We also discuss the statistical methods underpinning fine-tuning and present a framework for such analysis.
Publisher
Elsevier
Citation
Thorvaldsen S, Hössjer O. Using statistical methods to model the fine-tuning of molecular machines and systems. Journal of Theoretical Biology. 2020;501:1-14
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk) [663]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)