ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes

Permanent link
https://hdl.handle.net/10037/19970
DOI
https://doi.org/10.1016/j.scitotenv.2020.139588
Thumbnail
View/Open
article.pdf (2.952Mb)
Published version (PDF)
Date
2020-05-25
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Cabrol, Lea; Thalasso, Frederic; Gandois, Laure; Sepulveda-Jauregui, Armando; Martinez-Cruz, Karla; Teisserenc, Roman; Tananaev, Nikita; Tveit, Alexander Tøsdal; Svenning, Mette M.; Barret, Maialen
Abstract
Arctic lakes emit methane (CH4) to the atmosphere. The magnitude of this flux could increase with permafrost thaw but might also be mitigated by microbial CH4 oxidation. Methane oxidation in oxic water has been extensively studied, while the contribution of anaerobic oxidation of methane (AOM) to CH4 mitigation is not fully understood. We have investigated four Northern Siberian stratified lakes in an area of discontinuous permafrost nearby Igarka, Russia. Analyses of CH4 concentrations in the water column demonstrated that 60 to 100% of upward diffusing CH4 was oxidized in the anoxic layers of the four lakes. A combination of pmoA and mcrA gene qPCR and 16S rRNA gene metabarcoding showed that the same taxa, all within Methylomonadaceae and including the predominant genus Methylobacter as well as Crenothrix, could be the major methane-oxidizing bacteria (MOB) in the anoxic water of the four lakes. Correlation between Methylomonadaceae and OTUs within Methylotenera, Geothrix and Geobacter genera indicated that AOM might occur in an interaction between MOB, denitrifiers and iron-cycling partners. We conclude that MOB within Methylomonadaceae could have a crucial impact on CH4 cycling in these Siberian Arctic lakes by mitigating the majority of produced CH4 before it leaves the anoxic zone. This finding emphasizes the importance of AOM by Methylomonadaceae and extends our knowledge about CH4 cycle in lakes, a crucial component of the global CH4 cycle.
Publisher
Elsevier
Citation
Cabrol, Thalasso, Gandois L, Sepulveda-Jauregui, Martinez-Cruz, Teisserenc, Tananaev N, Tveit AT, Svenning MM, Barret. Anaerobic oxidation of methane and associated microbiome in anoxic water of Northwestern Siberian lakes. Science of the Total Environment. 2020;736
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)