The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer
Permanent link
https://hdl.handle.net/10037/20175Date
2020-11-24Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Loe, Leif Egil; Liston, Glen E.; Pigeon, Gabriel; Barker, Kristin; Horvitz, Nir; Stien, Audun; Forchhammer, Mads C.; Getz, Wayne M.; Irvine, Robert Justin; Lee, Aline Magdalena; Movik, Lars K.; Mysterud, Atle; Pedersen, Åshild Ønvik; Reinking, Adele K.; Ropstad, Erik; Trondrud, Liv Monica; Tveraa, Torkild; Veiberg, Vebjørn; Hansen, Brage Bremset; Albon, Steve D.Abstract
Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die‐offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual‐based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six‐week delay in snow‐onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter‐onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.
Publisher
John Wiley & Sons LtdCitation
Loe LE, Liston GE, Pigeon G, Barker, Horvitz, Stien A, Forchhammer MC, Getz WM, Irvine RJ, Lee AM, Movik, Mysterud A, Pedersen ÅØ, Reinking, Ropstad E, Trondrud T, Tveraa T, Veiberg V, Hansen BB, Albon SD. The neglected season: Warmer autumns counteract harsher winters and promote population growth in Arctic reindeer. Global Change Biology. 2020Metadata
Show full item recordCollections
Copyright 2020 The Author(s)