ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
  •   Home
  • Fakultet for biovitenskap, fiskeri og økonomi
  • Institutt for arktisk og marin biologi
  • Artikler, rapporter og annet (arktisk og marin biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth

Permanent link
https://hdl.handle.net/10037/20296
DOI
https://doi.org/10.3390/microorganisms9010153
Thumbnail
View/Open
article.pdf (1.645Mb)
Published version (PDF)
Date
2021-01-12
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Tveit, Alexander Tøsdal; Schmider, Tilman; Hestnes, Anne Grethe; Lindgren, Matteus; Didriksen, Alena; Svenning, Mette Marianne
Abstract
The second largest sink for atmospheric methane (CH4) is atmospheric methane oxidizing-bacteria (atmMOB). How atmMOB are able to sustain life on the low CH4 concentrations in air is unknown. Here, we show that during growth, with air as its only source for energy and carbon, the recently isolated atmospheric methane-oxidizer Methylocapsa gorgona MG08 (USCα) oxidizes three atmospheric energy sources: CH4, carbon monoxide (CO), and hydrogen (H2) to support growth. The cell-specific CH4 oxidation rate of M. gorgona MG08 was estimated at ~0.7 × 10−18 mol cell−1 h−1, which, together with the oxidation of CO and H2, supplies 0.38 kJ Cmol−1 h−1 during growth in air. This is seven times lower than previously assumed necessary to support bacterial maintenance. We conclude that atmospheric methane-oxidation is supported by a metabolic flexibility that enables the simultaneous harvest of CH4, H2 and CO from air, but the key characteristic of atmospheric CH4 oxidizing bacteria might be very low energy requirements.
Is part of
Schmider, T. (2024). Life on Air: On the Physiological Basis of Atmospheric Methane Oxidizing Bacteria. (Doctoral thesis). https://hdl.handle.net/10037/33622
Publisher
MDPI
Citation
Tveit, Schmider, Hestnes, Lindgren, Didriksen, Svenning. Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth. Microorganisms. 2021;9(153)
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (arktisk og marin biologi) [1636]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)