Vis enkel innførsel

dc.contributor.authorTveit, Alexander Tøsdal
dc.contributor.authorSchmider, Tilman
dc.contributor.authorHestnes, Anne Grethe
dc.contributor.authorLindgren, Matteus
dc.contributor.authorDidriksen, Alena
dc.contributor.authorSvenning, Mette Marianne
dc.date.accessioned2021-01-15T13:43:00Z
dc.date.available2021-01-15T13:43:00Z
dc.date.issued2021-01-12
dc.description.abstractThe second largest sink for atmospheric methane (CH<sub>4</sub>) is atmospheric methane oxidizing-bacteria (atmMOB). How atmMOB are able to sustain life on the low CH<sub>4</sub> concentrations in air is unknown. Here, we show that during growth, with air as its only source for energy and carbon, the recently isolated atmospheric methane-oxidizer <i>Methylocapsa gorgona</i> MG08 (USCα) oxidizes three atmospheric energy sources: CH<sub>4</sub>, carbon monoxide (CO), and hydrogen (H<sub>2</sub>) to support growth. The cell-specific CH<sub>4</sub> oxidation rate of <i>M. gorgona</i> MG08 was estimated at ~0.7 × 10<sup>−18</sup> mol cell<sup>−1</sup> h<sup>−1</sup>, which, together with the oxidation of CO and H<sub>2</sub>, supplies 0.38 kJ Cmol<sup>−1</sup> h<sup>−1</sup> during growth in air. This is seven times lower than previously assumed necessary to support bacterial maintenance. We conclude that atmospheric methane-oxidation is supported by a metabolic flexibility that enables the simultaneous harvest of CH<sub>4</sub>, H<sub>2</sub> and CO from air, but the key characteristic of atmospheric CH<sub>4</sub> oxidizing bacteria might be very low energy requirements.en_US
dc.identifier.citationTveit, Schmider, Hestnes, Lindgren, Didriksen, Svenning. Simultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growth. Microorganisms. 2021;9(153)en_US
dc.identifier.cristinIDFRIDAID 1869727
dc.identifier.doi10.3390/microorganisms9010153
dc.identifier.issn2076-2607
dc.identifier.urihttps://hdl.handle.net/10037/20296
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.ispartofSchmider, T. (2024). Life on Air: On the Physiological Basis of Atmospheric Methane Oxidizing Bacteria. (Doctoral thesis). <a href=https://hdl.handle.net/10037/33622>https://hdl.handle.net/10037/33622</a>
dc.relation.journalMicroorganisms
dc.relation.projectIDinfo:eu-repo/grantAgreement/RCN/FRIMEDBIO/251027/Norway/Time & Energy: Fundamental microbial mechanisms that control CH4 dynamics in a warming Arctic//en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.subjectVDP::Mathematics and natural science: 400::Zoology and botany: 480en_US
dc.subjectVDP::Matematikk og Naturvitenskap: 400::Zoologiske og botaniske fag: 480en_US
dc.titleSimultaneous Oxidation of Atmospheric Methane, Carbon Monoxide and Hydrogen for Bacterial Growthen_US
dc.type.versionpublishedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel