Show simple item record

dc.contributor.authorGoldberg, Vladislav V.
dc.contributor.authorLychagin, Valentin V.
dc.date.accessioned2009-08-25T09:08:48Z
dc.date.available2009-08-25T09:08:48Z
dc.date.issued2008-10-30
dc.description.abstractWe prove that any planar 4-web defines a unique projective structure in the plane in such a way that the leaves of the web foliations are geodesics of this projective structure. We also find conditions for the projective structure mentioned above to contain an affine symmetric connection, and conditions for a planar 4-web to be equivalent to a geodesic 4-web on an affine symmetric surface. Similar results are obtained for planar d-webs,d >4, provided that additional d −4 second-order invariants vanish.en
dc.descriptionDette er forfatternes aksepterte versjonen
dc.format.extent154591 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.citationActa Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications DOI 10.1007/s10440-009-9437-1en
dc.identifier.urihttps://hdl.handle.net/10037/2047
dc.identifier.urnURN:NBN:no-uit_munin_1799
dc.language.isoengen
dc.publisherSpringer Netherlandsen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectGeodesic weben
dc.subjectLinear weben
dc.subjectEuler equationen
dc.subjectProjective structureen
dc.subjectAffine symmetric spaceen
dc.titleGeodesic Webs on a Two-Dimensional Manifold and Euler Equationsen
dc.typeJournal articleen
dc.typeTidsskriftartikkelen
dc.typePeer revieweden


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record