dc.contributor.author | Goldberg, Vladislav V. | |
dc.contributor.author | Lychagin, Valentin V. | |
dc.date.accessioned | 2009-08-25T09:08:48Z | |
dc.date.available | 2009-08-25T09:08:48Z | |
dc.date.issued | 2008-10-30 | |
dc.description.abstract | We prove that any planar 4-web defines a unique projective structure in the plane
in such a way that the leaves of the web foliations are geodesics of this projective structure.
We also find conditions for the projective structure mentioned above to contain an affine
symmetric connection, and conditions for a planar 4-web to be equivalent to a geodesic
4-web on an affine symmetric surface. Similar results are obtained for planar d-webs,d >4,
provided that additional d −4 second-order invariants vanish. | en |
dc.description | Dette er forfatternes aksepterte versjon | en |
dc.format.extent | 154591 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Acta Applicandae Mathematicae: An International Survey Journal on Applying Mathematics and Mathematical Applications DOI 10.1007/s10440-009-9437-1 | en |
dc.identifier.uri | https://hdl.handle.net/10037/2047 | |
dc.identifier.urn | URN:NBN:no-uit_munin_1799 | |
dc.language.iso | eng | en |
dc.publisher | Springer Netherlands | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412 | en |
dc.subject | Geodesic web | en |
dc.subject | Linear web | en |
dc.subject | Euler equation | en |
dc.subject | Projective structure | en |
dc.subject | Affine symmetric space | en |
dc.title | Geodesic Webs on a Two-Dimensional Manifold and Euler Equations | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |