Show simple item record

dc.contributor.authorKruglikov, Boris
dc.contributor.authorLychagin, Valentin V.
dc.date.accessioned2009-08-27T11:30:55Z
dc.date.available2009-08-27T11:30:55Z
dc.date.issued2005-03-07
dc.description.abstractWe generalize the notion of involutivity to systems of differential equations of different orders and show that the classical results relating involutivity, restrictions, characteristics and characteristicity, known for first order systems, extend to the general context. This involves, in particular, a new definition of strong characteristicity. The proof exploits a spectral sequence relating Spencer δ-cohomology of a symbolic system and its restriction to a non-characteristic subspace.en
dc.format.extent281236 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/10037/2052
dc.identifier.urnURN:NBN:no-uit_munin_1804
dc.language.isoengen
dc.rights.accessRightsopenAccess
dc.subjectVDP::Mathematics and natural science: 400::Mathematics: 410::Statistics: 412en
dc.subjectSpencer cohomologyen
dc.subjectsymbolic systemen
dc.subjectrestrictionen
dc.subjectinvolutivityen
dc.subjectcharacteristicsen
dc.titleSpencer δ-cohomology, restrictions, characteristics and involutive symbolic PDEsen
dc.typeWorking paperen
dc.typeArbeidsnotaten


File(s) in this item

Thumbnail
Thumbnail

This item appears in the following collection(s)

Show simple item record