ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

G(3)-supergeometry and a supersymmetric extension of the Hilbert–Cartan equation

Permanent link
https://hdl.handle.net/10037/20646
DOI
https://doi.org/10.1016/j.aim.2020.107420
Thumbnail
View/Open
article.pdf (1.273Mb)
Published version (PDF)
Date
2020-10-23
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kruglikov, Boris; Santi, Andrea; The, Dennis
Abstract
We realize the simple Lie superalgebra G(3) as supersymmetry of various geometric structures, most importantly super-versions of the Hilbert–Cartan equation (SHC) and Cartan's involutive PDE system that exhibit G(2) symmetry. We provide the symmetries explicitly and compute, via the first Spencer cohomology groups, the Tanaka–Weisfeiler prolongation of the negatively graded Lie superalgebras associated with two particular choices of parabolics. We discuss non-holonomic superdistributions with growth vector (2|4, 1|2, 2|0) deforming the flat model SHC, and prove that the second Spencer cohomology group gives a binary quadratic form, thereby indicating a “square-root” of Cartan's classical binary quartic invariant for generic rank 2 distributions in a 5-dimensional space. Finally, we obtain super-extensions of Cartan's classical submaximally symmetric models, compute their symmetries and observe a supersymmetry dimension gap phenomenon.
Publisher
Elsevier
Citation
Kruglikov, Santi, The. G(3)-supergeometry and a supersymmetric extension of the Hilbert–Cartan equation. Advances in Mathematics. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (matematikk og statistikk) [357]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)