ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for farmasi
  • Artikler, rapporter og annet (farmasi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections

Permanent link
https://hdl.handle.net/10037/20652
DOI
https://doi.org/10.1016/j.jconrel.2020.06.002
Thumbnail
View/Open
article.pdf (2.337Mb)
Published version (PDF)
Date
2020-06-07
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Obuobi, Sybil Akua Okyerewa; Julin, Kjersti; Fredheim, Elizabeth G. Aarag; Johannessen, Mona; Skalko-Basnet, Natasa
Abstract
The persistence of Staphylococcus aureus has been accredited to its ability to escape immune response via host cell invasion. Despite the efficacy of many antibiotics against S. aureus, the high extracellular concentrations of conventional antibiotics required for bactericidal activity is limited by their low cellular accumulation and poor intracellular retention. While nanocarriers have received tremendous attention for antibiotic delivery against persistent pathogens, they suffer daunting challenges such as low drug loading, poor retention and untimely release of hydrophilic cargos. Here, a hybrid system (Van_DNL) is fabricated wherein nucleic acid nanogels are caged within a liposomal vesicle for antibiotic delivery. The central principle of this approach relies on exploiting non-covalent electrostatic interactions between cationic cargos and polyanionic DNA to immobilize antibiotics and enable precise temporal release against intracellular S. aureus. In vitro characterization of Van_DNL revealed a stable homogenous formulation with circular morphology and enhanced vancomycin loading efficiency. The hybrid system significantly sustained the release of vancomycin over 24 h compared to liposomal or nanogel controls. Under enzymatic conditions relevant to S. aureus infections, lipase triggered release of vancomycin was observed from the hybrid. While using Van_DNL to treat S. aureus infected macrophages, a dose dependent reduction in intracellular bacterial load was observed over 24 h and exposure to Van_DNL for 48 h caused negligible cellular toxicity. Pre-treatment of macrophages with the antimicrobial hybrid resulted in a strong anti-inflammatory activity in synergy with vancomycin following endotoxin stimulation. Conceptually, these findings highlight these hybrids as a unique and universal platform for synergistic antimicrobial and anti-inflammatory therapy against persistent infections.
Publisher
Elsevier
Citation
Obuobi SAO, Julin K, Fredheim E, Johannessen M, Skalko-Basnet N. Liposomal delivery of antibiotic loaded nucleic acid nanogels with enhanced drug loading and synergistic anti-inflammatory activity against S. aureus intracellular infections. Journal of Controlled Release. 2020;324:620-632
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (farmasi) [394]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)