ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Video trajectory analysis using unsupervised clustering and multi-criteria ranking

Permanent link
https://hdl.handle.net/10037/21173
DOI
https://doi.org/10.1007/s00500-020-04967-9
Thumbnail
View/Open
article.pdf (3.555Mb)
Published version (PDF)
Date
2020-05-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Sekh, Arif Ahmed; Dogra, Debi Prasad; Kar, Samarjit; Roy, Partha Pratim
Abstract
Surveillance camera usage has increased significantly for visual surveillance. Manual analysis of large video data recorded by cameras may not be feasible on a larger scale. In various applications, deep learning-guided supervised systems are used to track and identify unusual patterns. However, such systems depend on learning which may not be possible. Unsupervised methods relay on suitable features and demand cluster analysis by experts. In this paper, we propose an unsupervised trajectory clustering method referred to as t-Cluster. Our proposed method prepares indexes of object trajectories by fusing high-level interpretable features such as origin, destination, path, and deviation. Next, the clusters are fused using multi-criteria decision making and trajectories are ranked accordingly. The method is able to place abnormal patterns on the top of the list. We have evaluated our algorithm and compared it against competent baseline trajectory clustering methods applied to videos taken from publicly available benchmark datasets. We have obtained higher clustering accuracies on public datasets with significantly lesser computation overhead.
Publisher
Springer
Citation
Sekh AA, Dogra, Kar S. Video trajectory analysis using unsupervised clustering and multi-criteria ranking. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)