dc.contributor.author | Kruglikov, Boris | |
dc.date.accessioned | 2009-09-22T08:25:29Z | |
dc.date.available | 2009-09-22T08:25:29Z | |
dc.date.issued | 2007-09-04 | |
dc.description.abstract | A criterion in terms of differential invariants for a metric on a surface
to be Liouville is established. Moreover, in this paper we completely solve
in invariant terms the local mobility problem of a 2D metric, considered
by Darboux: How many quadratic in momenta integrals does the geodesic
flow of a given metric possess? The method is also applied to recognition
of other polynomial integrals of geodesic flows. | en |
dc.description | Dette er forfatternes aksepterte versjon.
This is the author’s final accepted manuscript. | en |
dc.format.extent | 338129 bytes | |
dc.format.mimetype | application/pdf | |
dc.identifier.citation | Journal of Geometry and Physics 58 (2008) 979–995 doi:10.1016/j.geomphys.2008.03.005 | en |
dc.identifier.uri | https://hdl.handle.net/10037/2121 | |
dc.identifier.urn | URN:NBN:no-uit_munin_1872 | |
dc.language.iso | eng | en |
dc.publisher | Elsevier | en |
dc.rights.accessRights | openAccess | |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410::Topology/geometry: 415 | en |
dc.subject | geodesic flow | en |
dc.subject | Killing fieldlity | en |
dc.subject | Liouville metric | en |
dc.subject | polynomial integrals | en |
dc.subject | degree of mobi | en |
dc.subject | differential invariant | en |
dc.subject | compatibility | en |
dc.subject | multi-bracket | en |
dc.subject | solvability | en |
dc.title | Invariant characterization of Liouville metrics and polynomial integrals | en |
dc.type | Journal article | en |
dc.type | Tidsskriftartikkel | en |
dc.type | Peer reviewed | en |