The diatoms make up the largest and most important group of marine microalgae. They are responsible for a quarter of all inorganic carbon fixation in the ocean and are thus of immense importance for global CO2 sequestration. This makes them good candidates for biological carbon capture and utilization (CCU) by mass cultivation using CO2 emissions from industrial point sources. Large scale cultivation of marine diatoms will produce valuable biomass containing marine lipids and proteins with possible commercial application. Commercial production of biomass requires extensive knowledge on the species to be cultivated in terms of optimal cultivation conditions, but also on the bioactivity, cytotoxicity and how the species responds to changing cultivation conditions. Most studies on the bioactivity and biochemistry of marine diatoms have been performed on species cultivated in the laboratory. Cultivation conditions are known to affect the biochemistry of diatoms, and large-scale cultivation will inevitably lead to a change in the environmental conditions. The present study was therefore designed to investigate how
Porosira glacialis cultivated in large scale responds to changes in abiotic and biotic cultivation conditions. The first study was designed to investigate whether the direct addition of factory smoke as a source of CO2 would trigger production of bioactive or cytotoxic compounds in
P. glacialis. Bioactivity testing revealed activity in anticancer, antibacterial and antibiofilm assays, in addition to cytotoxicity against human lung fibroblasts and effect on the development of sea urchin larvae. Nonetheless, the addition of factory smoke did not increase the cytotoxicity of
P. glacialis, nor did it change the beneficial antibacterial and antibiofilm activity. These results are favourable for further development of large-scale production of diatom biomass.
P. glacialis was co-cultivated with zooplankton to investigate whether the bioactivity and metabolic expression of the diatom would change when exposed to grazing pressure. The bioactivity testing revealed that the presence of zooplankton increased the cytotoxicity of
P. glacialis towards human normal lung fibroblasts. Investigation of active compounds and metabolomic analysis showed that the grazing pressure possibly influence the carotenoid concentration in
P. glacialis. It was also found that the bioactivity might be traced to primary metabolites such as chlorophyll derived compounds. The study also showed that the use of OSMAC (one strain many compounds) could be a useful method for further investigation of the bioactivity of diatoms. Investigation of the antibiofilm activity of
P. glacialis resulted in isolation of two compounds showing inhibition of biofilm formation by Staphylococcus epidermidis. The compounds isolated were methyl 3-hydroxyoctadecanoate and a pheophorbide-like compound. This is the first time compounds with antibiofilm activity have been isolated from
P. glacialis as well as the first evidence of such activity from both the isolated compounds.
Kiselalgene utgjør den største og viktigste gruppen av marine mikroalger. De er ansvarlige for en fjerdedel av all uorganisk karbonfiksering i havet og er dermed av enorm betydning for det globale CO2 opptaket. Dette gjør dem til gode kandidater for biologisk karbonfangst og -utnyttelse (CCU) i massedyrking ved bruk av CO2 fra industrielle punktutslipp. Storskala dyrking av marine kiselalger vil produsere verdifull biomasse som inneholder marine lipider og proteiner med mulig kommersiell anvendelse. Kommersiell produksjon av biomasse krever stor kunnskap om arten som skal dyrkes med tanke på best mulige dyrkingsforhold, men også om bioaktivitet, toksisitet og hvordan arten reagerer på endrede dyrkingsforhold. De fleste studier på bioaktivitet og biokjemi av marine kiselalger er utført på arter dyrket i laboratoriet. Det er kjent at dyrkingsforhold påvirker biokjemien til kiselalger, og dyrking i stor skala vil uunngåelig føre til en endring i miljøforholdene. Denne studien ble derfor designet for å undersøke hvordan
Porosira glacialis dyrket i stor skala reagerer på endringer i abiotiske og biotiske dyrkingsforhold. Den første studien undersøkte om direkte tilsetning av fabrikkrøyk som kilde til CO2 ville endre produksjon av bioaktive eller toksiske forbindelser i
P. glacialis. Bioaktivitetstesting avdekket aktivitet i alle tester: anticancer, antibakteriell og anti-biofilm. I tillegg viste resultatene toksisitet som hemmet utvikling av kråkebolle-larver og humane lungefibroblaster. Likevel økte ikke tilsetting av fabrikkrøyk toksisiteten til
P. glacialis, og den hemmet heller ikke den gunstige antibakterielle og anti-biofilm-aktiviteten til algene. Disse resultatene er svært positive for videre utvikling av storskala produksjon av kiselalger.
P. glacialis ble dyrket sammen med dyreplankton for å undersøke om bioaktiviteten og utrykket av metabolitter ville endre seg når de ble utsatt for stress i form av beitetrykk. Testing av bioaktivitet avslørte at tilstedeværelsen av zooplankton økte toksisiteten til
P. glacialis mot humane normale lungefibroblaster. Undersøkelse av aktive forbindelser og metabolittprofiler viste at beitetrykket muligens påvirker konsentrasjonen av karotenoider i
P. glacialis, og at bioaktiviteten muligens kan spores til primære metabolitter som klorofyllderivater. Studien viste også at bruk av OSMAC (one strain many compounds) kunne være en nyttig metode for videre undersøkelse av bioaktiviteten til kiselalger. Undersøkelse av anti-biofilm-aktiviteten til
P. glacialis resulterte i isolasjon av to forbindelser som viser inhibering av biofilmdannelse av bakterien Staphylococcus epidermidis. De isolerte forbindelsene var metyl-3-hydroksyoktadekanoat og en pheophorbid-lignende struktur. Dette er første gang en forbindelse med anti-biofilm-aktivitet er blitt isolert fra
P. glacialis, og det første beviset på slik aktivitet fra begge de isolerte forbindelsene.