ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effects of motion correction, sampling rate and parametric modelling in dynamic contrast enhanced MRI of the temporomandibular joint in children affected with juvenile idiopathic arthritis

Permanent link
https://hdl.handle.net/10037/21498
DOI
https://doi.org/10.1016/j.mri.2020.12.014
Thumbnail
View/Open
article.pdf (2.003Mb)
Published version (PDF)
Date
2021-01-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Starck, Lea; Andersen, Erling; Macíček, Ondřej; Angenete, Oskar W; Augdal, Thomas Angell; Rosendahl, Karen; Jirík, Radovan; Grüner, Renate
Abstract
The temporomandibular joint (TMJ) is typically involved in 45–87% of children with Juvenile Idiopathic Arthritis (JIA). Accurate diagnosis of JIA is difficult as various clinical tests, including MRI, disagree. The purpose of this study is to optimize the methodological aspects of Dynamic Contrast Enhanced (DCE) MRI of the TMJ in children. In this cross-sectional study, including data from 73 JIA affected children, aged 6–15 years, effects of motion correction, sampling rate and parametric modelling on DCE-MRI data is investigated. Consensus among three radiologists determined the regions of interest. Quantitative perfusion parameters were estimated using four perfusion models; the Adiabatic Approximation to Tissue Homogeneity (AATH), Distributed Capillary Adiabatic Tissue Homogeneity (DCATH), Gamma Capillary Transit Time (GCTT) and Two Compartment Exchange (2CXM) models. Effects of motion correction were evaluated by a sum of least squares between corrected raw data and the GCTT model. The effect of systematically down sampling the raw data was tested. The sum of least squares was computed across all pharmacokinetic models. Relative difference perfusion parameters between the left and right TMJ were used for an unsupervised k-means based stratification of the data based on a principal component analysis, as well as for a supervised random forest classification. Diagnostic sensitivity and specificity were computed relative to structural image scorings. Paired sample t-tests, as well as ANOVA tests, were used (significant threshold: p < 0.05) with Tukeys post hoc test. High-level elastic motion correction provides the best least square fit to the GCTT model (percental improvement: 72–84%). A 4 s sampling rate captures more of the potentially disease relevant signal variations. The various parametric models all leave comparable residues (relative standard deviation: 3.4%). In further evaluation of DCE-MRI as a potential diagnostic tool for JIA a high-level elastic motion correction scheme should be adopted, with a sampling rate of at least 4 s. Results suggest that DCE-MRI data can be a valuable part in JIA diagnostics in the TMJ.
Publisher
Elsevier
Citation
Starck, Andersen, Macíček, Angenete, Augdal, Rosendahl, Jirík, Grüner. Effects of motion correction, sampling rate and parametric modelling in dynamic contrast enhanced MRI of the temporomandibular joint in children affected with juvenile idiopathic arthritis. Magnetic Resonance Imaging. 2021;77:204-212
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3244]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)