ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • View Item
  •   Home
  • Fakultet for humaniora, samfunnsvitenskap og lærerutdanning
  • Institutt for lærerutdanning og pedagogikk
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Curve-Based Classification Approach for Hyperspectral Dermatologic Data Processing

Permanent link
https://hdl.handle.net/10037/21825
DOI
https://doi.org/10.3390/s21030680
Thumbnail
View/Open
article.pdf (1.425Mb)
Published version (PDF)
Date
2021-01-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Uteng, Stig; Quevedo, Eduardo; Callico, Gustavo M.; Castaño, Irene; Carretero, Gregorio; Almeida, Pablo; Garcia, Aday; Hernandez, Javier A.; Godtliebsen, Fred
Abstract
This paper shows new contributions in the detection of skin cancer, where we present the use of a customized hyperspectral system that captures images in the spectral range from 450 to 950 nm. By choosing a 7 × 7 sub-image of each channel in the hyperspectral image (HSI) and then taking the mean and standard deviation of these sub-images, we were able to make fits of the resulting curves. These fitted curves had certain characteristics, which then served as a basis of classification. The most distinct fit was for the melanoma pigmented skin lesions (PSLs), which is also the most aggressive malignant cancer. Furthermore, we were able to classify the other PSLs in malignant and benign classes. This gives us a rather complete classification method for PSLs with a novel perspective of the classification procedure by exploiting the variability of each channel in the HSI.
Is part of
Uteng, S. (2022). Statistical Curve Analysis: Developing Methods and Expanding Knowledge in Health. (Doctoral thesis). https://hdl.handle.net/10037/25969.
Publisher
MDPI
Citation
Uteng S, Quevedo E, Callico GM, Castaño I, Carretero G, Almeida P, Garcia A, Hernandez JA, Godtliebsen F. Curve-Based Classification Approach for Hyperspectral Dermatologic Data Processing. Sensors. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (lærerutdanning og pedagogikk) [663]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)