ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-platform application of a sea ice classification method considering incident angle dependency of backscatter intensity and its use in separating level and deformed ice

Permanent link
https://hdl.handle.net/10037/21903
DOI
https://doi.org/10.5194/tc-2021-119
Thumbnail
View/Open
article.pdf (8.969Mb)
Submitted manuscript version (PDF)
Date
2021
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Guo, Wenkai; Itkin, Polona; Lohse, Johannes; Johansson, Malin; Doulgeris, Anthony Paul
Abstract
Wide-swath C-band synthetic aperture radar (SAR) has been used for sea ice classification and estimates of sea ice drift and deformation since it first became widely available in the 1990s. Here, we examine the potential to distinguish surface features created by sea ice deformation using ice type classification of SAR data. To perform this task with extended spatial and temporal coverage, we investigate the cross-platform transferability between training sets derived from Sentinel-1 Extra Wide (S1 EW) and RADARSAT-2 (RS2) ScanSAR Wide A (SCWA) and Fine Quad-polarimetric (FQ) data, as the same radiometrically calibrated backscatter coefficients are expected from these two C-band SAR platforms. For this, we use a novel sea ice classification method developed based on Arctic-wide S1 EW training, which considers the ice-type-dependent change of SAR backscatter intensity with incident angle (IA). This study focuses on the region near Fram Strait north of Svalbard to utilize expert knowledge of ice conditions from co-authors who participated in the Norwegian young sea ICE (N-ICE2015) expedition in the region. Separate training sets for S1 EW, RS2 SCWA and RS2 FQ data are derived using manually drawn polygons of different ice types, and are used to re-train the classifier. Results show that although the best classification accuracy is achieved for each dataset using its own training, different training sets yield similar results and IA slopes, with the exception of leads with calm open water, nilas or newly formed ice (the “leads”' class). This is found to be caused by different noise floor configurations of S1 and RS2 data, which lead to different IA slopes of this class. This indicates that dataset-specific re-training is needed for leads in the cross-platform application of the classifier. Based on the classifier thus re-trained for each dataset, the classification scheme is altered to target the separation of level and deformed ice, which enables direct comparison with independently derived sea ice deformation maps. The comparisons show that the classification of C-band SAR can be used to distinguish areas of ice divergence occupied by leads, young ice and level first-year ice (LFYI). However, it has limited capacity in delineating areas of ice deformation due to ambiguities in ice types represented by classes with higher backscatter intensities. This study provides reference to future studies seeking cross-platform application of training sets so they are fully utilized, and we expect further development of the classifier and the inclusion of other SAR datasets to enable image classification-based ice deformation detection using only satellite SAR data.
Description
Preprint version, currently under review.
Publisher
European Geosciences Union
Citation
Guo G, Itkin P, Lohse JP, Johansson A M, Doulgeris ap. Cross-platform application of a sea ice classification method considering incident angle dependency of backscatter intensity and its use in separating level and deformed ice. The Cryosphere Discussions. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)