ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
  •   Hjem
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced data analytics for ship performance monitoring under localized operational conditions

Permanent lenke
https://hdl.handle.net/10037/21948
DOI
https://doi.org/10.1016/j.oceaneng.2021.109392
Thumbnail
Åpne
article.pdf (4.720Mb)
Publisert versjon (PDF)
Dato
2021-07-08
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Bui, Khanh Quang; Perera, Lokukaluge Prasad
Sammendrag
Improving the operational energy efficiency of existing ships is attracting considerable interests to reduce the environmental footprint due to air emissions. As the shipping industry is entering into Shipping 4.0 with digitalization as a disruptive force, an intriguing area in the field of ship’s operational energy efficiency is big data analytics. This paper proposes a big data analytics framework for ship performance monitoring under localized operational conditions with the help of appropriate data analytics together with domain knowledge. The proposed framework is showcased through a data set obtained from a bulk carrier pertaining the detection of data anomalies, the investigation of the ship’s localized operational conditions, the identification of the relative correlations among parameters and the quantification of the ship’s performance in each of the respective conditions. The novelty of this study is to provide a KPI (i.e. key performance indicator) for ship performance quantification in order to identify the best performance trim-draft mode under the engine modes of the case study ship. The proposed framework has the features to serve as an operational energy efficiency measure to provide data quality evaluation and decision support for ship performance monitoring that is of value for both ship operators and decision-makers.
Er en del av
Bui, K.Q. (2023). An Integrated Data Analytics Framework for Enhancing the Environmental and Life-cycle Economic Performance in Shipping. (Doctoral thesis). https://hdl.handle.net/10037/28590.
Forlag
Elsevier
Sitering
Bui, Perera. Advanced data analytics for ship performance monitoring under localized operational conditions. Ocean Engineering. 2021
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (UB) [3245]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring