ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for matematikk og statistikk
  • Artikler, rapporter og annet (matematikk og statistikk)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Instance Segmentation of Microscopic Foraminifera

Permanent lenke
https://hdl.handle.net/10037/22041
DOI
https://doi.org/10.3390/app11146543
Thumbnail
Åpne
article.pdf (12.21Mb)
Publisert versjon (PDF)
Dato
2021-07-16
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Johansen, Thomas Haugland; Sørensen, Steffen Aagaard; Møllersen, Kajsa; Godtliebsen, Gustav
Sammendrag
Foraminifera are single-celled marine organisms that construct shells that remain as fossils in the marine sediments. Classifying and counting these fossils are important in paleo-oceanographic and -climatological research. However, the identification and counting process has been performed manually since the 1800s and is laborious and time-consuming. In this work, we present a deep learning-based instance segmentation model for classifying, detecting, and segmenting microscopic foraminifera. Our model is based on the Mask R-CNN architecture, using model weight parameters that have learned on the COCO detection dataset. We use a fine-tuning approach to adapt the parameters on a novel object detection dataset of more than 7000 microscopic foraminifera and sediment grains. The model achieves a (COCO-style) average precision of 0.78 on the classification and detection task, and 0.80 on the segmentation task. When the model is evaluated without challenging sediment grain images, the average precision for both tasks increases to 0.84 and 0.86, respectively. Prediction results are analyzed both quantitatively and qualitatively and discussed. Based on our findings we propose several directions for future work and conclude that our proposed model is an important step towards automating the identification and counting of microscopic foraminifera
Forlag
MDPI
Sitering
Johansen T, Sørensen SA, Møllersen K, Godtliebsen G. Instance Segmentation of Microscopic Foraminifera. Applied Sciences. 2021;11(14)
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (matematikk og statistikk) [357]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring