ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Comparative Study of Statistical Techniques for Prediction of Meteorological and Oceanographic Conditions: An Application in Sea Spray Icing

Permanent link
https://hdl.handle.net/10037/22794
DOI
https://doi.org/10.3390/jmse9050539
Thumbnail
View/Open
article.pdf (3.562Mb)
Published version (PDF)
Date
2021-05-17
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Shojaei Barjouei, Abolfazl; Naseri, Masoud
Abstract
Environmental conditions in Arctic waters pose challenges to various offshore industrial activities. In this regard, better prediction of meteorological and oceanographic conditions contributes to addressing the challenges by developing economic plans and adopting safe strategies. This study revolved around simulation of meteorological and oceanographic conditions. To this aim, the applications of Bayesian inference, as well as Monte Carlo simulation (MCS) methods including sequential importance sampling (SIS) and Markov Chain Monte Carlo (MCMC) were studied. Three-hourly reanalysis data from the NOrwegian ReAnalysis 10 km (NORA10) for 33 years were used to evaluate the performance of the suggested simulation approaches. The data corresponding to the first 32 years were used to predict the meteorological and oceanographic conditions, and the data corresponding to the following year were used to model verification on a daily basis. The predicted meteorological and oceanographic conditions were then considered as inputs for the newly introduced icing model, namely Marine-Icing model for the Norwegian Coast Guard (MINCOG), to estimate sea spray icing in some regions of the Arctic Ocean, particularly in the sea area between Northern Norway and Svalbard archipelago. The results indicate that the monthly average absolute deviation (AAD) from reanalysis values for the MINCOG estimations with Bayesian, SIS, and MCMC inputs is not greater than 0.13, 0.22, and 0.41 cm/h, respectively.
Publisher
MDPI
Citation
Shojaei Barjouei A, Naseri N. A Comparative Study of Statistical Techniques for Prediction of Meteorological and Oceanographic Conditions: An Application in Sea Spray Icing. Journal of Marine Science and Engineering. 2021;9(5):539
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [361]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)