ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
  •   Home
  • Universitetsbiblioteket
  • Artikler, rapporter og annet (UB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers

Permanent link
https://hdl.handle.net/10037/22799
DOI
https://doi.org/10.3389/fphys.2021.682943
Thumbnail
View/Open
article.pdf (1.009Mb)
Published version (PDF)
Date
2021-06-16
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Gejl, Kasper Degn; Hvid, Lars G.; Andersson, Erik P.; Jensen, Rasmus; Holmberg, Hans-Christer; Ørtenblad, Niels
Abstract
Introduction: Little is known about potential differences in contractile properties of muscle fibers of the same type in arms and legs. Accordingly, the present study was designed to compare the force-generating capacity and Ca2+ sensitivity of fibers from arm and leg muscles of highly trained cross-country skiers.

Method: Single muscle fibers of m. vastus lateralis and m. triceps brachii of eight highly trained cross-country skiers were analyzed with respect to maximal Ca2+-activated force, specific force and Ca2+ sensitivity.

Result: The maximal Ca2+-activated force was greater for myosin heavy chain (MHC) II than MHC I fibers in both the arm (+62%, P < 0.001) and leg muscle (+77%, P < 0.001), with no differences between limbs for each MHC isoform. In addition, the specific force of MHC II fibers was higher than that of MHC I fibers in both arms (+41%, P = 0.002) and legs (+95%, P < 0.001). The specific force of MHC II fibers was the same in both limbs, whereas MHC I fibers from the m. triceps brachii were, on average, 39% stronger than fibers of the same type from the m. vastus lateralis (P = 0.003). pCa50 was not different between MHC I and II fibers in neither arms nor legs, but the MHC I fibers of m. triceps brachii demonstrated higher Ca2+ sensitivity than fibers of the same type from m. vastus lateralis (P = 0.007).

Conclusion: Comparison of muscles in limbs equally well trained revealed that MHC I fibers in the arm muscle exhibited a higher specific force-generating capacity and greater Ca2+ sensitivity than the same type of fiber in the leg, with no such difference in the case of MHC II fibers. These distinct differences in the properties of fibers of the same type in equally well-trained muscles open new perspectives in muscle physiology.
Publisher
Frontiers Media
Citation
Hvid, Andersson, Jensen, Holmberg, Ørtenblad. Contractile Properties of MHC I and II Fibers From Highly Trained Arm and Leg Muscles of Cross-Country Skiers. Frontiers in Physiology. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (UB) [3257]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)