dc.contributor.author | Shaimardan, S. | |
dc.contributor.author | Persson, Lars Erik | |
dc.contributor.author | Tokmagambetov, N.S. | |
dc.date.accessioned | 2021-10-25T12:18:09Z | |
dc.date.available | 2021-10-25T12:18:09Z | |
dc.date.issued | 2020 | |
dc.description.abstract | In this paper we derive a sufficient condition for the existence of a unique solution of a Cauchy type q-fractional problem (involving the fractional q-derivative of Riemann-Liouville type) for some nonlinear differential equations. The key technique is to first prove that this Cauchy type q-fractional problem is equivalent to a corresponding Volterra q-integral equation. Moreover, we define the q-analogue of the Hilfer fractional derivative or composite fractional derivative operator and prove some similar new equivalence, existence and uniqueness results as above. Finally, some examples are presented to illustrate our main results in cases where we can even give concrete formulas for these unique solutions. | en_US |
dc.identifier.citation | Shaimardan S, Persson LE, Tokmagambetov. Existence and Uniqueness of Some Cauchy Type Problems in
Fractional q-Difference Calculus
. Filomat. 2020 | en_US |
dc.identifier.cristinID | FRIDAID 1910405 | |
dc.identifier.doi | 10.2298/FIL2013429S | |
dc.identifier.issn | 0354-5180 | |
dc.identifier.uri | https://hdl.handle.net/10037/22811 | |
dc.language.iso | eng | en_US |
dc.publisher | Department of Mathematics and Informatics, Faculty of Science and Mathematics, University of Niš | en_US |
dc.relation.journal | Filomat | |
dc.rights.accessRights | openAccess | en_US |
dc.rights.holder | Copyright 2020 The Author(s) | en_US |
dc.subject | VDP::Mathematics and natural science: 400::Mathematics: 410 | en_US |
dc.subject | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | en_US |
dc.title | Existence and Uniqueness of Some Cauchy Type Problems in Fractional q-Difference Calculus | en_US |
dc.type.version | publishedVersion | en_US |
dc.type | Journal article | en_US |
dc.type | Tidsskriftartikkel | en_US |