ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for medisinsk biologi
  • Artikler, rapporter og annet (medisinsk biologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles

Permanent link
https://hdl.handle.net/10037/23106
DOI
https://doi.org/10.1038/s41598-021-00383-7
Thumbnail
View/Open
article.pdf (3.180Mb)
Published version (PDF)
Date
2021-10-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Sanabria-Moreno, Adriana Maria; James Peter, Jessin Janice; Hjerde, Erik; Simonsen, Gunnar Skov; Hanssen, Anne Merethe
Abstract
Shotgun-metagenomics may give valuable clinical information beyond the detection of potential pathogen(s). Identification of antimicrobial resistance (AMR), virulence genes and typing directly from clinical samples has been limited due to challenges arising from incomplete genome coverage. We assessed the performance of shotgun-metagenomics on positive blood culture bottles (n = 19) with periprosthetic tissue for typing and prediction of AMR and virulence profiles in Staphylococcus aureus. We used different approaches to determine if sequence data from reads provides more information than from assembled contigs. Only 0.18% of total reads was derived from human DNA. Shotgun-metagenomics results and conventional method results were consistent in detecting S. aureus in all samples. AMR and known periprosthetic joint infection virulence genes were predicted from S. aureus. Mean coverage depth, when predicting AMR genes was 209 ×. Resistance phenotypes could be explained by genes predicted in the sample in most of the cases. The choice of bioinformatic data analysis approach clearly influenced the results, i.e. read-based analysis was more accurate for pathogen identification, while contigs seemed better for AMR profiling. Our study demonstrates high genome coverage and potential for typing and prediction of AMR and virulence profiles in S. aureus from shotgun-metagenomics data.
Publisher
Nature Research
Citation
Sanabria-Moreno, James Peter, Hjerde, Simonsen, Hanssen. Shotgun-metagenomics based prediction of antibiotic resistance and virulence determinants in Staphylococcus aureus from periprosthetic tissue on blood culture bottles. Scientific Reports. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (medisinsk biologi) [1103]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)