Sources and sinks of methane in sea ice: Insights from stable isotopes
Permanent link
https://hdl.handle.net/10037/23138Date
2021-10-27Type
Journal articleTidsskriftartikkel
Peer reviewed
Author
Jacques, Caroline; Sapart, Celia J.; Fripiat, François; Carnat, Gauthier; Zhou, Jiayun; Delille, Bruno; Röckmann, Thomas; van der Veen, Carina; Niemann, Helge; Haskell, Tim; Tison, Jean-LouisAbstract
We report on methane (CH4) stable isotope (d13C and d2
H) measurements from landfast sea ice collected near
Barrow (Utqiagvik, Alaska) and Cape Evans (Antarctica) over the winter-to-spring transition. These
measurements provide novel insights into pathways of CH4 production and consumption in sea ice. We
found substantial differences between the two sites. Sea ice overlying the shallow shelf of Barrow was
supersaturated in CH4 with a clear microbial origin, most likely from methanogenesis in the sediments. We
estimated that in situ CH4 oxidation consumed a substantial fraction of the CH4 being supplied to the sea ice,
partly explaining the large range of isotopic values observed (d13C between –68.5 and –48.5 ‰ and d2
H
between –246 and –104 ‰). Sea ice at Cape Evans was also supersaturated in CH4 but with surprisingly
high d13C values (between –46.9 and –13.0 ‰), whereas d2
H values (between –313 and –113 ‰) were in the
range of those observed at Barrow.These are the first measurements of CH4 isotopic composition in Antarctic
sea ice. Our data set suggests a potential combination of a hydrothermal source, in the vicinity of the Mount
Erebus, with aerobic CH4 formation in sea ice, although the metabolic pathway for the latter still needs to be
elucidated. Our observations show that sea ice needs to be considered as an active biogeochemical interface,
contributing to CH4 production and consumption, which disputes the standing paradigm that sea ice is an
inert barrier passively accumulating CH4 at the ocean-atmosphere boundary.
Publisher
University of California PressCitation
Jacques C, Sapart, Fripiat, Carnat G, Zhou, Delille B, Röckmann T, van der Veen C, Niemann H, Haskell, Tison J. Sources and sinks of methane in sea ice: Insights from stable isotopes. Elementa: Science of the Anthropocene. 2021;9(1)Metadata
Show full item recordCollections
Copyright 2021 The Author(s)