ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for teknologi og sikkerhet
  • Artikler, rapporter og annet (teknologi og sikkerhet)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Probability distributions for wind speed volatility characteristics: A case study of Northern Norway

Permanent link
https://hdl.handle.net/10037/23177
DOI
https://doi.org/10.1016/j.egyr.2021.07.125
Thumbnail
View/Open
article.pdf (769.9Kb)
Published version (PDF)
Date
2021-11
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chen, Hao; Anfinsen, Stian Normann; Birkelund, Yngve; Yuan, Fuqing
Abstract
The Norwegian Arctic is rich in wind resources. The development of wind power in this region can boost green energy and also promote local economies. In wind power engineering, it is a tremendous advantage to base projects on a sound understanding of the intrinsic properties of wind resources in an area. Wind speed volatility, a phenomenon that strongly affects wind power generation, has not received sufficient research attention. In this paper, a framework for studying short-term wind speed volatility with statistical analysis and probabilistic modeling is constructed for an existing wind farm in Northern Norway. It is found that unlike the characteristics of wind power volatility, wind speed volatility cannot be described by the normal distribution. The reason is that even though the probability distribution of wind speed volatility is centrally symmetric, it is much more centrally concentrated and has thicker tails. After comparing three distributions corresponding to different sampling periods, this paper suggests utilizing the t distribution, with average modeling RMSE less than 0.006 and R2 exceeding 0.995 and with the best modeling scenario of temporal resolution, the 30 mins has an RMSE of 0.0051 and an R2 of 0.997, to more accurately and effectively explore the fluctuating characteristics of wind speed.
Is part of
Chen, H. (2022). Data-driven Arctic wind energy analysis by statistical and machine learning approaches. (Doctoral thesis). https://hdl.handle.net/10037/26938
Publisher
Elsevier
Citation
Chen H, Anfinsen SN, Birkelund Y, Yuan F. Probability distributions for wind speed volatility characteristics: A case study of Northern Norway. Energy Reports. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (teknologi og sikkerhet) [360]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)