ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Theoretical Analysis of Deep Neural Networks and Parametric PDEs

Permanent link
https://hdl.handle.net/10037/23257
DOI
https://doi.org/10.1007/s00365-021-09551-4
Thumbnail
View/Open
article.pdf (714.2Kb)
Published version (PDF)
Date
2021-06-02
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Kutyniok, Gitta Astrid Hildegard; Petersen, Philipp; Raslan, Mones; Schneider, Reinhold
Abstract
We derive upper bounds on the complexity of ReLU neural networks approximating the solution maps of parametric partial differential equations. In particular, without any knowledge of its concrete shape, we use the inherent low dimensionality of the solution manifold to obtain approximation rates which are significantly superior to those provided by classical neural network approximation results. Concretely, we use the existence of a small reduced basis to construct, for a large variety of parametric partial differential equations, neural networks that yield approximations of the parametric solution maps in such a way that the sizes of these networks essentially only depend on the size of the reduced basis.
Publisher
Springer
Citation
Kutyniok, Petersen, Raslan, Schneider. A Theoretical Analysis of Deep Neural Networks and Parametric PDEs. Constructive approximation. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1058]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)