ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for kjemi
  • Artikler, rapporter og annet (kjemi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Relativistic Four-Component DFT Calculations of Vibrational Frequencies

Permanent link
https://hdl.handle.net/10037/23375
DOI
https://doi.org/10.1021/acs.jpca.1c07398
Thumbnail
View/Open
article.pdf (750.7Kb)
Published version (PDF)
Date
2021-11-29
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Jakubowska, Katarzyna; Pecul-Kudelska, Magdalena; Ruud, Kenneth
Abstract
We investigate the effect of relativity on harmonic vibrational frequencies. Density functional theory (DFT) calculations using the four-component Dirac–Coulomb Hamiltonian have been performed for 15 hydrides (H2X, X = O, S, Se, Te, Po; XH3, X = N, P, As, Sb, Bi; and XH4, X = C, Si, Ge, Sn, Pb) as well as for HC≡CPbH3. The vibrational frequencies have been calculated using finite differences of the molecular energy with respect to geometrical distortions of the nuclei. The influences of the choice of basis set, exchange–correlation functional, and step length for the numerical differentiation on the calculated harmonic vibrational frequencies have been tested, and the method has been found to be numerically robust. Relativistic effects are noticeable for the heavier congeners H2Te and H<2Po, SbH3 and BiH3, and SnH4 and PbH4 and are much more pronounced for the vibrational modes with higher frequencies. Spin–orbit effects constitute a very small fraction of the total relativistic effects, except for H2Te and H2Po. For HC≡CPbH3 we find that only the frequencies of the modes with large contributions from Pb displacements are significantly affected by relativity.
Publisher
American Chemical Society
Citation
Jakubowska, Pecul-Kudelska, Ruud. Relativistic Four-Component DFT Calculations of Vibrational Frequencies. Journal of Physical Chemistry A. 2021;125:10315-10320
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (kjemi) [565]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)