ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraaknorsk 
    • EnglishEnglish
    • norsknorsk
  • Administrasjon/UB
Vis innførsel 
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
  •   Hjem
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization

Permanent lenke
https://hdl.handle.net/10037/23528
DOI
https://doi.org/10.1109/JSTARS.2021.3124308
Thumbnail
Åpne
article.pdf (6.678Mb)
Publisert versjon (PDF)
Dato
2021-11-13
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Forfatter
Khachatrian, Eduard; Chlaily, Saloua; Eltoft, Torbjørn; Marinoni, Andrea
Sammendrag
When dealing with multivariate remotely sensed records collected by multiple sensors, an accurate selection of information at the data, feature, or decision level is instrumental in improving the scenes’ characterization. This will also enhance the system’s efficiency and provide more details on modeling the physical phenomena occurring on the Earth’s surface. In this article, we introduce a flexible and efficient method based on graph Laplacians for information selection at different levels of data fusion. The proposed approach combines data structure and information content to address the limitations of existing graph-Laplacian-based methods in dealing with heterogeneous datasets. Moreover, it adapts the selection to each homogenous area of the considered images according to their underlying properties. Experimental tests carried out on several multivariate remote sensing datasets show the consistency of the proposed approach.
Er en del av
Khachatrian, E. (2023). Multimodal Integrated Remote Sensing for Arctic Sea Ice Monitoring. (Doctoral thesis). https://hdl.handle.net/10037/29338.
Forlag
IEEE
Sitering
Khachatrian, Chlaily, Eltoft, Marinoni. A Multimodal Feature Selection Method for Remote Sensing Data Analysis Based on Double Graph Laplacian Diagonalization. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2021;14:11546-11566
Metadata
Vis full innførsel
Samlinger
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Bla

Bla i hele MuninEnheter og samlingerForfatterlisteTittelDatoBla i denne samlingenForfatterlisteTittelDato
Logg inn

Statistikk

Antall visninger
UiT

Munin bygger på DSpace

UiT Norges Arktiske Universitet
Universitetsbiblioteket
uit.no/ub - munin@ub.uit.no

Tilgjengelighetserklæring