ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Charged dust in the D-region incoherent scatter spectrum

Permanent link
https://hdl.handle.net/10037/23638
DOI
https://doi.org/10.1017/S0022377821000866
Thumbnail
View/Open
article.pdf (3.886Mb)
Published version (PDF)
Date
2021-09-14
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Gunnarsdottir, Tinna L.; Mann, Ingrid
Abstract
We investigate the influence of charged dust on the incoherent scatter from the D-region ionosphere. Incoherent scatter is observed with high-power, large aperture radars and results from electromagnetic waves scattering at electrons that are coupled to other charged components through plasma oscillations. The influence of charged dust can hence be considered an effect of dusty plasma. The D-region contains meteoric smoke particles that are of nanometre size and form from incoming ablating meteors. Detection of such charged dust in the incoherent scatter spectrum from the D-region has previously been proposed and studied to some degree. We here present model calculations to investigate the influence of the charged dust component with a size distribution, instead of the one size dust components assumed in other works. The developed code to calculate the incoherent scatter spectrum from the D-region including dust particles with different sizes and different positive and negative charge states is made available (https://doi.org/10.18710/GHZIIY). We investigate how sizes, number density and charge state of the dust influence the spectrum during different ionospheric conditions. We consider the ionospheric parameters for the location of the EISCAT VHF radar during a year and find that conditions are most suitable for dust detection in winter below 80 km at times with increased electron densities. The prospects to derive dust parameters increase, when the incoherent scatter observations are combined with those of other instruments to provide independent information on electron density, neutral density and temperature.
Is part of
Gunnarsdottir, T.L. (2023). Mesospheric Dust - radar applications for detection and investigation. (Doctoral thesis). https://hdl.handle.net/10037/31666
Publisher
Cambrigde University Press
Citation
Gunnarsdottir, Mann. Charged dust in the D-region incoherent scatter spectrum. Journal of Plasma Physics. 2021
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)