Machine Learning-based Classification, Detection, and Segmentation of Medical Images
Permanent link
https://hdl.handle.net/10037/23693View/ Open
Date
2022-01-21Type
Doctoral thesisDoktorgradsavhandling
Author
Jha, DebeshAbstract
Has part(s)
Paper I: Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D. & Johansen, H.D. (2019). ResUNet++: An Advance architecture for Medical image Segmentation. Proceedings of IEEE International Symposium on Multimedia (ISM), 2019, 225-230. (Accepted manuscript version). Published version available at https://doi.org/10.1109/ISM46123.2019.00049.
Paper II: Jha, D., Smedsrud, P.H., Riegler, M.A., Halvorsen, P., de Lange, T., Johansen, D. & Johansen, H.D. (2020). Kvasir-SEG: A Segmented Polyp Dataset. In: Ro, Y., Cheng, W.H., Kim, J., Chu, W.T., Cui, P., Choi, J.W., Hu, M.C. & De Neve, W. (Eds), MultiMedia Modeling. MMM 2020. Lecture Notes in Computer Science, 11962, 451-462. Springer, Cham. Also available at https://doi.org/10.1007/978-3-030-37734-2_37.
Paper III: Jha, D., Smedsrud, P.H., Johansen, D., de Lange, T., Johansen, H.D., Halvorsen, P. & Riegler, M.A. (2021). A Comprehensive Study on Colorectal Polyp Segmentation With ResUNet++, Conditional Random Field and Test-Time Augmentation. IEEE Journal of Biomedical and Health Informatics, 25(6), 2029-2040. Also available in Munin at https://hdl.handle.net/10037/20301.
Paper IV: Jha, D., Riegler, M.A., Johansen, D., Halvorsen, P. & Johansen, H.D. (2020). DoubleU-Net: A Deep Convolutional Neural Network for Medical Image Segmentation. 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), 558-564. Published version not available in Munin due to publisher’s restrictions. Published version available at https://doi.org/10.1109/CBMS49503.2020.00111.
Paper V: Jha, D., Ali, S., Tomar, N.K., Johansen, H.D., Johansen, D., Rittscher, J. & Halvorsen, P. (2021). Real-Time Polyp Detection, Localization and Segmentation in Colonoscopy Using Deep Learning. IEEE Access, 9, 40496-40510. Also available in Munin at https://hdl.handle.net/10037/23242.
Paper VI: Jha, D., Tomar, N.K., Ali, S, Riegler, M.A., Johansen, H.D., Johansen, D. & Halvorsen, P. (2021). NanoNet: Real-Time Polyp Segmentation in Endoscopy. Proceedings of IEEE International Symposium on Computer-Based Medical Systems (CBMS), 2021. (Accepted manuscript version). Published version available at https://doi.org/10.1109/CBMS52027.2021.00014.
Paper VII: Jha, D., Ali, S., Emanuelsen, K., Hicks, S.A., Garcia-Ceja, E., Riegler, M.A., … Halvorsen, P. (2021). Kvasir-Instrument: Diagnostic and therapeutic tool segmentation dataset in gastrointestinal endoscopy. In: Lokoč, J., Skopal, T., Schoeffmann, K., Mezaris, V., Li, X., Vrochidis, S. & Patras, I. (Eds), MultiMedia Modeling. MMM 2021. Lecture Notes in Computer Science, 12573, 218-229. Springer, Cham. Also available at https://doi.org/10.1007/978-3-030-67835-7_19.
Paper VIII: Jha, D., Hicks, S.A., Emanuelsen, K., Johansen, H., Johansen, D., de Lange, T., Riegler, M.A. & Halvorsen, P. (2020). Medico Multimedia Task at MediaEval 2020: Automatic Polyp Segmentation. Working Notes Proceedings of the MediaEval 2020 Workshop, Online, 14-15 December 2020. Also available at http://ceur-ws.org/Vol-2882/paper1.pdf.
Paper IX: Jha, D., Yazidi, A., Riegler, M.A., Johansen, D., Johansen, H.D. & Halvorsen, P. (2021). LightLayers: Parameter Efficient Dense and Convolutional Layers for Image Classification. In: Zhang, Y., Xu, Y. & Tian, H. (Eds.), Parallel and Distributed Computing, Applications and Technologies. PDCAT 2020. Lecture Notes in Computer Science, 12606, 285–296. Springer, Cham. Also available at https://doi.org/10.1007/978-3-030-69244-5_25.
Paper X: Jha, D., Ali, S., Hicks, S., Thambawita, V., Borgli, H., Smedsrud, P.H., … Halvorsen, P. (2021). A comprehensive analysis of classification methods in gastrointestinal endoscopy imaging. Medical Image Analysis, 70, 102007. Also available in Munin at https://hdl.handle.net/10037/23476.
Paper XI: Jha, D., Ali, S., Tomar, N.K., Riegler, M.A., Johansen, D., Johansen, H.D. & Halvorsen, P. (2021). Exploring Deep Learning Methods for Real-Time Surgical Instrument Segmentation in Laparoscopy. Proceedings of the IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), 2021. Published version not available in Munin due to publisher’s restrictions. Published version available at https://doi.org/10.1109/BHI50953.2021.9508610.
Paper XII: Borgli, H., Thambawita, V., Smedsrud, P.H., Hicks, S., Jha, D., Eskeland, S.L., … de Lange, T. (2020). HyperKvasir, a comprehensive multiclass image and video dataset for gastrointestinal endoscopy. Scientific Data, 7, 283. Also available in Munin at https://hdl.handle.net/10037/20442.
Paper XIII: Smedsrud, P.H., Gjestang, H.L., Nedrejord, O.O., Næss, E., Thambawita, V., Hicks, S., … Halvorsen, P. (2021). Kvasir-Capsule, a video capsule endoscopy dataset. Scientific Data, 8, 142. Also available in Munin at https://hdl.handle.net/10037/21497.
Paper XIV: Thambawita, V., Jha, D., Hammer, H.L., Johansen, H.D., Johansen, D., Halvorsen, P. & Riegler, M.A. (2020). An extensive study on cross-dataset bias and evaluation metrics interpretation for machine learning applied to gastrointestinal tract abnormality classification. ACM Transactions on Computing for Healthcare, 1(3), 17. Also available at https://doi.org/10.1145/3386295.
Paper XV: Tomar, N.K., Jha, D., Ali, S., Johansen, H.D., Johansen, D., Riegler, M.A. & Halvorsen, P. (2021). DDANet: Dual Decoder Attention Network for Automatic Polyp Segmentation. (Accepted manuscript). Now published in Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J. & Vezzani, R. (Eds.), Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, 12668, 307-314. Springer, Cham. Available at https://doi.org/10.1007/978-3-030-68793-9_23.
Paper XVI: Tomar, N., Ibtehaz, N., Jha, D., Halvorsen, P. & Ali, S. (2021). Improving generalizability in polyp segmentation using ensemble convolutional neural network. Proceedings of the 3rd International Workshop and Challenge on Computer Vision in Endoscopy (EndoCV 2021), Nice, France, April 13, 2021. Also available at http://ceur-ws.org/Vol-2886/paper5.pdf.
Paper XVII: Hicks, S.A., Jha, D., Thambawita, V., Halvorsen, P., Hammer, H.L. & Riegler M.A. (2021). The EndoTect 2020 Challenge: Evaluation and Comparison of Classification, Segmentation and Inference Time for Endoscopy. In: Del Bimbo, A., Cucchiara, R., Sclaroff, S., Farinella, G.M., Mei, T., Bertini, M., Escalante, H.J. & Vezzani, R. (Eds.), Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science, 12668, 263-274. Springer, Cham. Also available at https://doi.org/10.1007/978-3-030-68793-9_18.
Paper XVIII: Thambawita, V., Jha, D., Riegler, M., Halvorsen, P., Hammer, H.L., Johansen, H.D. & Johansen, D. (2018). The medico-task 2018: Disease detection in the gastrointestinal tract using global features and deep learning. Proceedings of MediaEval’18, 29-31 October 2018, Sophia Antipolis, France. Also available at http://ceur-ws.org/Vol-2283/MediaEval_18_paper_20.pdf.
Paper XIX: Strümke, I., Hicks, S.A., Thambawita, V., Jha, D., Parasa, S., Riegler, M.A. & Halvorsen, P. (2021). Artificial Intelligence in Gastroenterology. In: Lidströmer, N. & Ashrafian, H. (Eds.), Artificial Intelligence in Medicine, 1-21. Springer, Cham. (Accepted manuscript). Published version available at https://doi.org/10.1007/978-3-030-58080-3_163-2.
Paper XX: Roß, T., Reinke, A., Full, P.M., Wagner, M., Kenngott, H., Apitz, M., … Maier-Hein, L. (2021). Comparative validation of multi-instance instrument segmentation in endoscopy: Results of the ROBUST-MIS 2019 challenge. Medical Image Analysis, 70, 101920. Also available at https://doi.org/10.1016/j.media.2020.101920.
Paper XXI: Ge-Peng Ji, Yu-Cheng Chou, Deng-Ping Fan, Geng Chen, Huazhu Fu, Debesh Jha, and Ling Shao (2021). Progressively Normalized Self-Attention Network for Video Polyp Segmentation. (Manuscript). Now published in: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y. & Essert, C. (Eds.), Medical Image Computing and Computer Assisted Intervention – MICCAI 2021. MICCAI 2021. Lecture Notes in Computer Science, 12901, 142-152. Springer, Cham. Available at https://doi.org/10.1007/978-3-030-87193-2_14.
Publisher
UiT Norges arktiske universitetUiT The Arctic University of Norway
Metadata
Show full item recordCollections
The following license file are associated with this item: