ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for informatikk
  • Artikler, rapporter og annet (informatikk)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network

Permanent link
https://hdl.handle.net/10037/23852
DOI
https://doi.org/10.1016/j.eswa.2021.115548
Thumbnail
View/Open
article.pdf (3.231Mb)
Published version (PDF)
Date
2021-07-05
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Chattopadhyay, Soham; Zary, Laila; Quek, Chai; Prasad, Dilip K.
Abstract
While we know that motivated students learn better than non-motivated students but detecting motivation is challenging. Here we present a game-based motivation detection approach from the EEG signals. We take an original approach of using EEG-based brain computer interface to assess if motivation state is manifest in physiological EEG signals as well, and what are suitable conditions in order to achieve the goal? To the best of our knowledge, detection of motivation level from brain signals is proposed for the first time in this paper. In order to resolve the central obstacle of small EEG datasets containing deep features, we propose a novel and unique ‘residual-in-residual architecture of convolutional neural network (RRCNN)’ that is capable of reducing the problem of over-fitting on small datasets and vanishing gradient. Having accomplished this, several aspects of using EEG signals for motivation detection are considered, including channel selection and accuracy obtained using alpha or beta waves of EEG signals. We also include a detailed validation of the different aspects of our methodology, including detailed comparison with other works as relevant. Our approach achieves 89% accuracy in using EEG signals to detect motivation state while learning, where alpha wave signals of frontal asymmetry channels are employed. A more robust (less sensitive to learning conditions) 88% accuracy is achieved using beta waves signals of frontal asymmetry channels. The results clearly indicate the potential of detecting motivation states using EEG signals, provided suitable methodologies such as proposed in this paper, are employed.
Publisher
Elsevier
Citation
Chattopadhyay, Zary, Quek C, Prasad DK. Motivation detection using EEG signal analysis by residual-in-residual convolutional neural network. Expert Systems With Applications. 2021;184
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (informatikk) [482]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)