ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
  •   Home
  • Det helsevitenskapelige fakultet
  • Institutt for klinisk medisin
  • Artikler, rapporter og annet (klinisk medisin)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets

Permanent link
https://hdl.handle.net/10037/23954
DOI
https://doi.org/10.1016/j.eclinm.2020.100552
Thumbnail
View/Open
article.pdf (527.5Kb)
Published version (PDF)
Date
2020-10-04
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Matsushita, K; Jassal, Simerjot; Solbu, Marit Dahl; Sang, Yingying; Ballew, Shoshana H.; Grams, Morgan E.; Surapaneni, Aditya; Arnlov, Johan; Bansal, Nisha; Bozic, Milica; Brenner, Hermann; Brunskill, Nigel J.; Chang, Alex R.; Chinnadurai, Rajkumar; Cirillo, Massimo; Correa, Adolfo; Ebert, Natalie; Eckardt, Kai-Uwe; Gansevoort, Ron T.; Gutierrez, Orlando; Hadaegh, Farzad; He, Jiang; Hwang, Shih-Jen; Jafar, Tazeen H.; Kayama, Takamasa; Kovesdy, Csaba P.; Landman, Gijs W.; Levey, Andrew S.; Lloyd-Jones, Donald M.; Major, Rupert W.; Miura, Katsuyuki; Muntner, Paul; Nadkarni, Girish N.; Naimark, David M.J.; Nowak, Christoph; Ohkubo, Takayoshi; Pena, Michelle J.; Polkinghorne, Kevan R.; Sabanayagam, Charumathi; Sairenchi, Toshimi; Schneider, Markus P.; Shalev, Varda; Shlipak, Michael; Stempniewicz, Nikita; Tollitt, James; Valdivielso, José M.; van der Leeuw, Joep; Wang, Angela Yee-Moon; Wen, Chi-Pang; Woodward, Mark; Yatsuya, Hiroshi; Zhang, Luxia; Schaeffner, Elke; Coresh, Josef
Abstract
Background: Chronic kidney disease (CKD) measures (estimated glomerular filtration rate [eGFR] and albuminuria) are frequently assessed in clinical practice and improve the prediction of incident cardiovascular disease (CVD), yet most major clinical guidelines do not have a standardized approach for incorporating these measures into CVD risk prediction. “CKD Patch” is a validated method to calibrate and improve the predicted risk from established equations according to CKD measures.

Methods: Utilizing data from 4,143,535 adults from 35 datasets, we developed several “CKD Patches” incorporating eGFR and albuminuria, to enhance prediction of risk of atherosclerotic CVD (ASCVD) by the Pooled Cohort Equation (PCE) and CVD mortality by Systematic COronary Risk Evaluation (SCORE). The risk enhancement by CKD Patch was determined by the deviation between individual CKD measures and the values expected from their traditional CVD risk factors and the hazard ratios for eGFR and albuminuria. We then validated this approach among 4,932,824 adults from 37 independent datasets, comparing the original PCE and SCORE equations (recalibrated in each dataset) to those with addition of CKD Patch.

Findings: We confirmed the prediction improvement with the CKD Patch for CVD mortality beyond SCORE and ASCVD beyond PCE in validation datasets (Dc-statistic 0.027 [95% CI 0.018 0.036] and 0.010 [0.007 0.013] and categorical net reclassification improvement 0.080 [0.032 0.127] and 0.056 [0.044 0.067], respectively). The median (IQI) of the ratio of predicted risk for CVD mortality with CKD Patch vs. the original prediction with SCORE was 2.64 (1.89 3.40) in very high-risk CKD (e.g., eGFR 30 44 ml/min/ 1.73m2 with albuminuria 30 mg/g), 1.86 (1.48 2.44) in high-risk CKD (e.g., eGFR 45 59 ml/min/1.73m2 with albuminuria 30 299 mg/g), and 1.37 (1.14 1.69) in moderate risk CKD (e.g., eGFR 60 89 ml/min/ 1.73m2 with albuminuria 30 299 mg/g), indicating considerable risk underestimation in CKD with SCORE. The corresponding estimates for ASCVD with PCE were 1.55 (1.37 1.81), 1.24 (1.10 1.54), and 1.21 (0.98 1.46). Interpretation: The “CKD Patch” can be used to quantitatively enhance ASCVD and CVD mortality risk prediction equations recommended in major US and European guidelines according to CKD measures, when available.

Publisher
Elsevier
Citation
Matsushita K, Jassal S, Solbu MD. Incorporating kidney disease measures into cardiovascular risk prediction: Development and validation in 9 million adults from 72 datasets. EClinicalMedicine. 2020
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (klinisk medisin) [1974]
Copyright 2020 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)