Vis enkel innførsel

dc.contributor.authorHo, Tu Dac
dc.contributor.authorGrøtli, Esten Ingar
dc.contributor.authorJohansen, Tor Arne
dc.date.accessioned2022-02-15T12:07:37Z
dc.date.available2022-02-15T12:07:37Z
dc.date.issued2021-05-13
dc.description.abstractIn this paper, we consider a wireless sensor network of nodes at the sea surface drifting due to wind and sea currents. In our scenario an Unmanned Aerial Vehicle (UAV) will be used to gather data from the sensor nodes. The goal is to find a flyable path which is optimal in terms of sensor node energy consumption, total channel throughput between the UAV and sensor nodes, flight time for the UAV and frequency of the node visits by the UAV. Finally, the path should also be optimal concerning node position estimation uncertainty. A Kalman Filter (KF) is used to estimate the nodes motions and Particle Swarm Optimization (PSO) is the method used to calculate the UAV path taking all of these objectives into account. The proposed node tracking aware path planning solution is compared to two other scenarios: One where the path planning is based on full knowledge of the node positions at all times, and one where path planning is based on the last known positions of the nodes.en_US
dc.identifier.citationHo T.D., Grøtli EI, Johansen TA. PSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAV. IEEE International Symposium on Consumer Electronics. 2021en_US
dc.identifier.cristinIDFRIDAID 1996196
dc.identifier.doi10.1109/ICCE50685.2021.9427697
dc.identifier.issn2158-3994
dc.identifier.issn2158-4001
dc.identifier.urihttps://hdl.handle.net/10037/24055
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.journalIEEE International Symposium on Consumer Electronics
dc.relation.projectIDNorges forskningsråd: 223254en_US
dc.rights.accessRightsopenAccessen_US
dc.rights.holderCopyright 2021 The Author(s)en_US
dc.titlePSO and Kalman Filter-Based Node Motion Prediction for Data Collection from Ocean Wireless Sensors Network with UAVen_US
dc.type.versionacceptedVersionen_US
dc.typeJournal articleen_US
dc.typeTidsskriftartikkelen_US
dc.typePeer revieweden_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel