ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
  •   Home
  • Fakultet for ingeniørvitenskap og teknologi
  • Institutt for datateknologi og beregningsorienterte ingeniørfag
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Topological Singularities in Periodic Media: Ginzburg–Landau and Core-Radius Approaches

Permanent link
https://hdl.handle.net/10037/24149
DOI
https://doi.org/10.1007/s00205-021-01731-7
Thumbnail
View/Open
article.pdf (733.0Kb)
Published version (PDF)
Date
2021-12-20
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Alicandro, Roberto; Braides, Andrea; Cicalese, Marco; De Luca, Lucia; Piatnitski, Andrey
Abstract
We describe the emergence of topological singularities in periodic media within the Ginzburg–Landau model and the core-radius approach. The energy functionals of both models are denoted by Eε,δ, where ε represent the coherence length (in the Ginzburg–Landau model) or the core-radius size (in the core-radius approach) and δ denotes the periodicity scale. We carry out the -convergence analysis of Eε,δ as ε → 0 and δ = δε → 0 in the | log ε| scaling regime, showing that the -limit consists in the energy cost of finitely many vortex-like point singularities of integer degree. After introducing the scale parameter λ = min 1, lim ε→0 | log δε| | log ε| (upon extraction of subsequences), we show that in a sense we always have a separation-of-scale effect: at scales smaller than ελ we first have a concentration process around some vortices whose location is subsequently optimized, while for scales larger than ελ the concentration process takes place “after” homogenization.
Publisher
Springer
Citation
Alicandro, Braides, Cicalese, De Luca, Piatnitski A. Topological Singularities in Periodic Media: Ginzburg–Landau and Core-Radius Approaches. Archive for Rational Mechanics and Analysis. 2021:1-51
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (datateknologi og beregningsorienterte ingeniørfag) [171]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)