ub.xmlui.mirage2.page-structure.muninLogoub.xmlui.mirage2.page-structure.openResearchArchiveLogo
    • EnglishEnglish
    • norsknorsk
  • Velg spraakEnglish 
    • EnglishEnglish
    • norsknorsk
  • Administration/UB
View Item 
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
  •   Home
  • Fakultet for naturvitenskap og teknologi
  • Institutt for fysikk og teknologi
  • Artikler, rapporter og annet (fysikk og teknologi)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Joint optimization of an autoencoder for clustering and embedding

Permanent link
https://hdl.handle.net/10037/24207
DOI
https://doi.org/10.1007/s10994-021-06015-5
Thumbnail
View/Open
article.pdf (3.979Mb)
Published version (PDF)
Date
2021-06-21
Type
Journal article
Tidsskriftartikkel
Peer reviewed

Author
Boubekki, Ahcene; Kampffmeyer, Michael; Brefeld, Ulf; Jenssen, Robert
Abstract
Deep embedded clustering has become a dominating approach to unsupervised categorization of objects with deep neural networks. The optimization of the most popular methods alternates between the training of a deep autoencoder and a k-means clustering of the autoencoder’s embedding. The diachronic setting, however, prevents the former to beneft from valuable information acquired by the latter. In this paper, we present an alternative where the autoencoder and the clustering are learned simultaneously. This is achieved by providing novel theoretical insight, where we show that the objective function of a certain class of Gaussian mixture models (GMM’s) can naturally be rephrased as the loss function of a one-hidden layer autoencoder thus inheriting the built-in clustering capabilities of the GMM. That simple neural network, referred to as the clustering module, can be integrated into a deep autoencoder resulting in a deep clustering model able to jointly learn a clustering and an embedding. Experiments confrm the equivalence between the clustering module and Gaussian mixture models. Further evaluations afrm the empirical relevance of our deep architecture as it outperforms related baselines on several data sets.
Publisher
Springer
Citation
Boubekki A, Kampffmeyer MC, Brefeld U, Jenssen R. Joint optimization of an autoencoder for clustering and embedding. . Machine Learning. 2021;110:1901-1937
Metadata
Show full item record
Collections
  • Artikler, rapporter og annet (fysikk og teknologi) [1057]
Copyright 2021 The Author(s)

Browse

Browse all of MuninCommunities & CollectionsAuthor listTitlesBy Issue DateBrowse this CollectionAuthor listTitlesBy Issue Date
Login

Statistics

View Usage Statistics
UiT

Munin is powered by DSpace

UiT The Arctic University of Norway
The University Library
uit.no/ub - munin@ub.uit.no

Accessibility statement (Norwegian only)